PLANNING COMMISSION AGENDA
April 6, 2022
CITY COUNCIL CHAMBERS
6:30 p.m.
50 Natoma Street
Folsom, California 95630

Members of the public wishing to participate in this meeting via teleconference may participate either online or by telephone via WebEx.

Meeting Number: 2553 573 4494
Meeting Password: 04 06 2022

Join the meeting by WebEx online:
https://cityoffolsom.my.webex.com/cityoffolsom.my/j.php?MTID=m63356db68f3be470592d071b94482c56
To make a public comment using the WebEx online platform, please use the “raise hand” feature at the bottom center of the screen. Please make sure to enable audio controls once access has been given by the Commission Clerk to speak. Please wait to be called upon by the Commission Clerk.

Join the meeting by WebEx telephone: Dial 1-415-655-0001
To make a public comment by phone, please press *3 to raise your hand. Please make sure to enable audio controls by pressing *6 once access has been given by the Commission Clerk to speak. Please wait to be called upon by the Commission Clerk.

Verbal comments via virtual meeting must adhere to the principles of the three-minute speaking time permitted for public comment at Planning Commission meetings.

CALL TO ORDER PLANNING COMMISSION: Bill Miklos, Ralph Peña, Barbara Leary, Eileen Reynolds, Daniel West, Bill Romanelli, Justin Raithel

Any documents produced by the City and distributed to the Planning Commission regarding any item on this agenda will be made available at the Community Development Counter at City Hall located at 50 Natoma Street, Folsom, California and at the table to the left as you enter the Council Chambers. The meeting is available to view via webcast on the City’s website the day after the meeting.

PLEDGE OF ALLEGIANCE

CITIZEN COMMUNICATION: The Planning Commission welcomes and encourages participation in City Planning Commission meetings, and will allow up to five minutes for expression on a non-agenda item. Matters under the jurisdiction of the Commission, and not on the posted agenda, may be addressed by the general public; however, California law prohibits the Commission from taking action on any matter which is not on the posted agenda unless it is determined to be an emergency by the Commission.

MINUTES

The minutes of the December 15, 2021 meeting will be presented for approval.
Oath of Office Administered to Bill Romanelli

Election of Chair and Vice Chair

PRESENTATIONS

1. Draft Active Transportation Plan (Brett Bollinger, Parks and Recreation Department)

PUBLIC HEARING

2. PN 21-120, Folsom Corporate Center Apartments and Determination that the Project is Exempt from CEQA

A Public Hearing for approval of a General Plan Amendment, Rezone, and Planned Development Permit for the Folsom Corporate Center Apartments project. The proposed project includes development of a 253-unit market-rate apartment community on two sites (Lot 1: 7.24-acre parcel and Lot 6: 4.68-acre parcel) within the Folsom Corporate Center, which is located on the south side of Iron Point Road, slightly east of the intersection of Iron Point Road and Oak Avenue Parkway. A General Plan Amendment to change the General Plan land use designation for the two project parcels (Lot 1 and Lot 6) from IND (Industrial/Office Park) to MHD (Multi-Family High Density) and A Rezone to change the zoning designation for Lot 1 from M-L PD (Limited Manufacturing, Planned Development District) to R-4 PD (General Apartment, Planned Development District) and to change the zoning designation of Lot 6 from BP PD (Business and Professional, Planned Development District) to R-4 PD (General Apartment, Planned Development District). This project is exempt from the California Environmental Quality Act in accordance with Section 15315 of the CEQA Guidelines. (Principal Planner: Steve Banks)

PLANNING COMMISSION / PLANNING MANAGER REPORT

The next Planning Commission meeting is scheduled for April 20, 2022. Additional non-public hearing items may be added to the agenda; any such additions will be posted on the bulletin board in the foyer at City Hall at least 72 hours prior to the meeting. Persons having questions on any of these items can visit the Community Development Department during normal business hours (8:00 a.m. to 5:00 p.m.) at City Hall, 2nd Floor, 50 Natoma Street, Folsom, California, prior to the meeting. The phone number is (916) 461-6231 and FAX number is (916) 355-7274.

In compliance with the Americans with Disabilities Act, if you are a disabled person and you need a disability-related modification or accommodation to participate in the meeting, please contact the Community Development Department at (916) 461-6231, (916) 355-7274 (fax) or kmullett@folsom.ca.us. Requests must be made as early as possible and at least two-full business days before the start of the meeting.

NOTICE REGARDING CHALLENGES TO DECISIONS

The appeal period for Planning Commission Action: Any appeal of a Planning Commission action must be filed, in writing with the City Clerk’s Office no later than ten (10) days from the date of the action pursuant to Resolution No. 8081. Pursuant to all applicable laws and regulations, including without limitation, California Government Code Section 65009 and or California Public Resources Code Section 21177, if you wish to challenge in court any of the above decisions (regarding planning, zoning and/or environmental decisions), you may be limited to raising only those issues you or someone else raised at the public hearing(s) described in this notice/agenda, or in written correspondence delivered to the City at, or prior to, the public hearing.
PLANNING COMMISSION MINUTES
December 15, 2021
CITY COUNCIL CHAMBERS
6:30 P.M.
50 Natoma Street
Folsom, CA 95630

CALL TO ORDER PLANNING COMMISSION: Ralph Peña, Barbara Leary, Vice Chair Eileen Reynolds, Daniel West, Bill Miklos, Chair Justin Raithel

ABSENT: None

CITIZEN COMMUNICATION: None

MINUTES: The minutes of the December 1, 2021 meeting were approved as submitted.

NEW BUSINESS

1. PN 21-271, Folsom Pointe Shopping Center Pad “E” and Determination that the Project is Exempt from CEQA

A Public Meeting to consider a request from Mark Marvelli for approval of a Commercial Design Review application for an 8,000 square foot multi-tenant pad building located on Pad “E” of the Folsom Pointe Shopping Center at 165 Placerville Road. The zoning classification for the site is C-3 PD, while the General Plan land-use designation is RCC. The project is exempt from the California Environmental Quality Act in accordance with Section 15301 of the CEQA Guidelines. (Project Planner: Josh Kinkade/Applicant: Mark Marvelli)

COMMISSIONER LEARY MOVED TO APPROVE COMMERCIAL DESIGN REVIEW FOR AN 8,000 SQUARE FOOT MULTI-TENANT PAD BUILDING, OUTDOOR DINING AREAS AND PARKING LOT MODIFICATIONS LOCATED ON PAD “E” OF THE FOLSOM POINTE SHOPPING CENTER AT 165 PLACERVILLE ROAD (PN 21-271), AS ILLUSTRATED ON ATTACHMENTS 5 THROUGH 7, WITH THE FINDINGS (FINDINGS A-H) AND THE CONDITIONS OF APPROVAL (CONDITIONS 1-51) INCLUDED AS ATTACHMENT 3 TO THIS REPORT.

COMMISSIONER REYNOLDS SECONDED THE MOTION.

COMMISSIONER PEÑA MADE A FRIENDLY AMENDMENT TO MODIFY CONDITION NO. 30 TO STATE:

“30. 7) All screen walls in the building renderings shall be 4 feet maximum.”

COMMISSIONER LEARY ACCEPTED THE FRIENDLY AMENDMENT WHICH CARRIED THE FOLLOWING VOTE:
AYES: PEÑA, LEARY, REYNOLDS, WEST, MIKLOS, RAITHEL
NOES: NONE
RECUSED: NONE
ABSENT: NONE

PUBLIC HEARING

2. PN 21-118 Large Lot Vesting Tentative Subdivision Map Amendment, Small Lot Vesting Tentative Subdivision Map Amendment for Lots 24-32, Russell Ranch Design Guidelines Amendment, Design Review, Development Agreement Amendment and Street Names Amendment, and Addendum to the Previously Certified Folsom Plan Area Specific Plan Environmental Impact Report in Compliance with CEQA

A Public Hearing to consider a request for Large Lot Vesting Tentative Subdivision Map Amendment, Small Lot Vesting Tentative Subdivision Map Amendment, Russell Ranch Design Guidelines Amendment, Design Review, Development Agreement Amendment and Street Names Amendment to convert 208 single-family homes from age restricted “Active Adult” units to conventional (non-age restricted) units on a 134-acre site located within the Folsom Plan Area Specific Plan at the northeast corner of Empire Ranch Road and White Rock Road (APNs: 072-3520-001, 003, 005-016, 019, and 020). The site is designated Single-Family High Density in the General Plan and Folsom Plan Area Specific Plan. The Applicant is also amending street names. An addendum to the previously certified Folsom Plan Area Specific Plan EIR/EIS has been prepared in accordance with the California Environmental Quality Act (CEQA). (Project Planner: Kathy Pease, Contract Planner/Applicant: Lennar)

1. Bill Romanelli addressed the Planning Commission with questions regarding market saturation and occupancy.

COMMISSIONER RAITHEL MOVED TO RECOMMEND THAT THE CITY COUNCIL APPROVE THE CEQA ADDENDUM DOCUMENTING THAT THE PROJECT INCLUDING A LARGE LOT TENTATIVE SUBDIVISION MAP AMENDMENT, SMALL LOT VESTING TENTATIVE SUBDIVISION MAP AMENDMENT, DESIGN REVIEW, DEVELOPMENT AGREEMENT AMENDMENT AND STREET NAME AMENDMENT TO CONVERT 208 AGE RESTRICTED UNITS TO CONVENTIONAL UNITS DOES NOT RESULT IN ANY NEW IMPACTS NOT ALREADY IDENTIFIED IN THE ENVIRONMENTAL IMPACT REPORT/ENVIRONMENTAL IMPACT STATEMENT FOR THE FOLSOM SOUTH OF U.S. HIGHWAY 50 SPECIFIC PLAN PROJECT (FPASP EIR/EIS) (STATE CLEARINGHOUSE NO. 2008092051) AND THE RUSSELL RANCH PROJECT ENVIRONMENTAL IMPACT REPORT (RUSSELL RANCH EIR) (STATE CLEARINGHOUSE NO. 2014062018). THESE APPROVALS ARE SUBJECT TO THE PROPOSED FINDINGS (FINDINGS A-X) AND THE RECOMMENDED LARGE LOT VESTING TENTATIVE SUBDIVISION MAP (CONDITIONS 1-14) AND THE SMALL LOT VESTING TENTATIVE SUBDIVISION MAP CONDITIONS OF APPROVAL (CONDITIONS 1-66) ATTACHED TO THIS REPORT (ATTACHMENT 4). WITH MODIFICATION TO CONDITION NO. 33 TO STATE:

“33. All Class II bike lanes (Savannah Parkway Empire Ranch Road) shall be striped, and the legends painted to the satisfaction of the Community Development Department. No parking shall be permitted within the Class II bike lanes.”

COMMISSIONER LEARY SECONDED THE MOTION WHICH CARRIED THE FOLLOWING VOTE:

AYES: PEÑA, LEARY, REYNOLDS, WEST, MIKLOS, RAITHEL
NOES: NONE
RECUSED: NONE
ABSENT: NONE

PLANNING COMMISSION / PLANNING MANAGER REPORT

The next Planning Commission meeting is tentatively scheduled for January 19, 2022.
RESPECTFULLY SUBMITTED,

Karen Sanabria, SENIOR OFFICE ASSISTANT

APPROVED:

__

Justin Raithel, CHAIR
COMMUNITY DEVELOPMENT

DATE: 4/6/22 Planning Commission Meeting

TO: Chairman and Planning Commissioners

FROM: Community Development Department

SUBJECT: Item #1 – Draft Active Transportation Plan Presentation

Brett Bollinger with the Parks and Recreation department, will provide a presentation to the Planning Commission on the Draft Active Transportation Plan.
Planning Commission Staff Report
50 Natoma Street, Council Chambers
Folsom, CA 95630

Project: Folsom Corporate Center Apartments
File #: PN 21-120
Requests:
General Plan Amendment
Rezone
Planned Development Permit

Location/APN: The proposed Folsom Corporate Center Apartments project is located on two parcels situated on the south side of Iron Point Road, slightly east of the intersection of Iron Point Road and Oak Avenue Parkway/APN Nos. 072-3120-023 and 072-3120-026

Staff Contact: Steve Banks, Principal Planner, 916-461-6207
sbanks@folsom.ca.us

Property Owner/Applicant
Name: FCC 50, LLC (Cole Partners)
Address: 2484 Natomas Park Drive, Suite 101
Sacramento CA 95833

Recommendation: Conduct a public hearing and upon conclusion recommend to City Council approval of a General Plan Amendment, Rezone, and Planned Development Permit for the Folsom Corporate Center Apartments project, subject to the findings (Findings A-U) and conditions of approval (Conditions 1-69) attached to this report.

Project Summary: The proposed project includes development of a 253-unit market-rate apartment community on two sites (Lot 1: 7.24-acre parcel and Lot 6: 4.68-acre parcel) within the Folsom Corporate Center, which is located on the south side of Iron Point Road, slightly east of the intersection of Iron Point Road and Oak Avenue Parkway. The following are the specific entitlements requested with the proposed project.

- A General Plan Amendment to change the General Plan land use designation for the two project parcels (Lot 1 and Lot 6) from IND (Industrial/Office Park) to MHD (Multi-Family High Density).
AGENDA ITEM NO. 2
Type: Public Hearing
Date: April 6, 2022

- A Rezone to change the zoning designation for Lot 1 from M-L PD (Limited Manufacturing, Planned Development District) to R-4 PD (General Apartment, Planned Development District) and to change the zoning designation of Lot 6 from BP PD (Business and Professional, Planned Development District) to R-4 PD (General Apartment, Planned Development District).

- A Planned Development Permit which contains detailed development and architectural standards for the proposed 253-unit residential apartment community.

These proposed actions are described in detail and analyzed later in this report.

Table of Contents:

Attachment 1 - Background and Setting
Attachment 2 - Project Description
 - General Plan Amendment
 - Rezone
 - Planned Development Permit
Attachment 3 - Analysis
 - General Plan Amendment
 - Rezone
 - Planned Development Permit
Attachment 4 - Conditions of Approval
Attachment 5 - Vicinity Map
Attachment 6 - General Plan Amendment Exhibits, dated November 16, 2021
Attachment 7 - Rezone Exhibits, dated November 16, 2021
Attachment 8 - Overall Site Plan, dated November 16, 2021
Attachment 9 - Individual Site Plans and Details, dated February 8, 2022
Attachment 10 - Preliminary Utility Plans, dated November 16, 2021
Attachment 11 - Preliminary Grading and Drainage Plans, dated November 16, 2021
Attachment 12 - Preliminary Landscape Plans and Details, dated November 16, 2021
Attachment 13 - Preliminary Access and Circulation Plan, dated November 16, 2021
Attachment 14 - Preliminary Lighting Plan and Details, dated November 16, 2021
Attachment 15 - Building Elevations, Floor Plans, and Details dated November 16, 2021
Attachment 16 - Color Renderings and Perspectives, dated November 16, 2021
Attachment 17 - Color and Materials Board, dated November 16, 2021
Attachment 18 - Signage Details, dated November 16, 2021
Attachment 19 - Building and Parking Summary, dated February 8, 2022
AGENDA ITEM NO. 2
Type: Public Hearing
Date: April 6, 2022

Attachment 20 - Site Photographs
Attachment 21 - Transportation Impact Study, dated February, 2022
Attachment 22 - Initial Study, Mitigated Negative Declaration, and Mitigation Monitoring and Reporting Program, dated March, 2022 (electronic version available for viewing at www.folsom.ca.us/government/community-development/planning-services/current-project-information)
Attachment 23 - SMAQMD ISMND Response Letter, dated March 24, 2022
Attachment 24 - Folsom Corporate Center Planned Development Guidelines
Attachment 25 - Folsom Corporate Center Apartments Booklet (Separate Bound Document)

Submitted,

PAM JOHNS
Community Development Director
ATTACHMENT 1
BACKGROUND AND SETTING

Background:

On August 15, 2000, the City Council approved a Tentative Subdivision Map and Planned Development for development of a 1.425-million-square-foot professional office center known as the Folsom Corporate Center. On May 1, 2002, the Planning Commission approved a Planned Development Permit and Conditional Use Permit for development of a 255,795-square-foot retail shopping center known as Folsom Gateway within the eastern portion of the previously approved Folsom Corporate Center. That approval resulted the reduction of 395,000 square feet of office space within the Folsom Corporate Center. A total of four professional office buildings have been developed within the Folsom Corporate Center with major tenants including HDR Engineering, Kaiser Permanente, Micron Technology, and SAFE Credit Union.

On January 26, 2016, the City Council approved a General Plan Amendment, Rezone, Planned Development Permit, and Conditional Use Permit for development of the 126-unit senior retirement community known as the Iron Point Retirement Community on a 4.68-acre property located at 2275 Iron Point Road. On October 4, 2017, the Planning Commission approved a one-year extension to the previously approved Planned Development Permit and Conditional Use Permit associated with the Iron Point Retirement Community project. On February 6, 2019, the Planning Commission approved an additional one-year extension to the previously approved Planned Development Permit and Conditional Use Permit associated with the Iron Point Retirement Community project. Subsequently, the applicant decided not to pursue development of the project and withdrew their application. It is important to note that the 4.68 parcel associated with Iron Point Retirement Community project is one of the parcels (Lot 6) included with the proposed Folsom Corporate Center Apartments project.

On October 7, 2020, the Planning Commission approved a Design Review application for development of an 11,716-square-foot single-story medical building (Kidney Dialysis Treatment Center) on a 2.77-acre site located near the southwest corner of the intersection of Iron Point Road and Rowberry Drive within the Folsom Corporate Center. The Kidney Dialysis Treatment Center is currently under construction and is located directly to the east of one of the parcels (Lot 1) associated with the proposed Folsom Corporate Center Apartments project.
Physical Setting

The Folsom Corporate Center Apartments project site consists of two separate parcels located within the Folsom Corporate Center development, which is generally located on the south side of Iron Point Road, slightly east of the intersection of Iron Point Road and Oak Avenue Parkway. Lot 1, which is a 7.24-acre parcel located between the Kaiser Permanente Medical Office Building and U.S. Highway 50 to the south, features moderately sloped terrain covered with non-native grasses and a single native Oak tree. Lot 6, which is a 4.68-acre parcel located between Iron Point Road and the SAFE Credit Union building to the south, has gently sloped terrain and contains non-native grasses and 10 native Oak trees. An aerial photograph of the project site and surrounding land uses is shown in Figure 1 below.

FIGURE 1: AERIAL PHOTOGRAPH OF PROJECT SITE
ATTACHMENT 2
PROJECT DESCRIPTION

APPLICANT’S PROPOSAL

The applicant, FCC 50, LLC (Cole Partners), is requesting approval of a General Plan Amendment, Rezone, and Planned Development Permit for development of a 253-unit market-rate apartment community on two parcels (Lot 1: 7.24-acre parcel and Lot 6: 4.68-acre parcel) within the Folsom Corporate Center, which is generally located on the south side of Iron Point Road, slightly east of the intersection of Iron Point Road and Oak Avenue Parkway.

As noted above, the applicant is requesting approval of three entitlements to allow for development of the proposed apartment community. The first entitlement is a request for approval of a General Plan Amendment to change the General Plan land use designation for the two project parcels (Lot 1 and Lot 6) from IND (Industrial/Office Park) to MHD (Multi-Family High Density). The second entitlement is a request for approval of a Rezone to change the zoning designation for Lot 1 from M-L PD (Limited Manufacturing, Planned Development District) to General Apartment, Planned Development District (R-4 PD) and to change the zoning designation of Lot 6 from BP PD (Business and Professional, Planned Development District) to General Apartment, Planned Development District (R-4 PD). The third entitlement is a request for approval of a Planned Development Permit to establish project-specific development standards, review the project site design, evaluate the architectural design of the multi-family apartment and clubhouse buildings, and establish signage criteria.

The proposed Folsom Corporate Center Apartments project, which includes development of 11 three-story apartment buildings and two clubhouse buildings (three-story and one-story buildings respectively), is comprised of 253 market rate apartments within a gated community. The apartment buildings include a combination of 16-plex buildings, 21-plex buildings, 26-plex building, and 32-plex buildings with a total of 16 studio units (564 square feet), 126 one-bedroom units (687 square feet), 97 two-bedroom units (990-1057 square feet), and 14 three-bedroom units (1,412 square feet). All apartment units are proposed to be accessible from interior hallways and include a full kitchen, living space, storage closets, bedrooms, bathrooms, and an outdoor patio/balcony. The one and three-story clubhouse buildings include a recreation room, a fitness center, a yoga studio, a spa room, a mail room, a bike storage facility, leasing offices, a storage room, and restroom facilities. Outdoor amenities associated with the clubhouse buildings include a pool, a spa, and deck areas. Additional outdoor amenities include two dog parks.

In relation to site design, Lot 1 includes seven rectangular apartment buildings that are evenly spaced within the eastern portion of parcel due to constraints associated with overhead transmission lines situated in the western portion of the parcel. Lot 6 includes four rectangular apartment buildings which are centrally located on the parcel.
The applicant proposes a modern contemporary architectural design theme intended to compliment the surrounding commercial buildings within the Folsom Corporate Center. Modern and unique design elements include angular building shapes and forms, varied roof heights, flat rooftops, recessed building elements, metal canopies, and extensive use of glass. Proposed building materials include stucco walls, stone veneer wainscoting, metal canopies, glass railing, and metal railing. The color scheme for the buildings is proposed to be generally earth tone, with extensive use of gray and brown colors accented by a mixture of lighter colors including white and tan.

General access to the project area is provided by three existing driveways located on the south side of Iron Point Road. Primary vehicle access to Lot 1 is provided by a new driveway on south side of an existing private ring road with secondary access accommodated by two emergency vehicle access driveways also situated on the south side of the ring road. Primary vehicle access to Lot 6 is provided by a new driveway on the north side of the private ring road with secondary access served by an emergency vehicle access driveway also positioned on the north side of the ring road. Each of the project driveways will accommodate all vehicle turning movements into and out of the respective sites. In addition, all project driveways will have access controlled by vehicle gates.

Proposed internal vehicle circulation consists of 27-foot-wide drive aisles to facilitate movement in and around the project sites. Pedestrian circulation is provided by a combination of new sidewalks and existing sidewalks located along the private ring road and also along Iron Point Road. Internal pedestrian circulation is accommodated by a series of new pedestrian pathways that provide connectivity to the apartment buildings, the clubhouse building, the perimeter sidewalks, and the future Class I trail to the south. Additional site improvements include: 491 parking spaces (includes combination of garage, carport, and uncovered spaces), 51 bicycle parking spaces, 5 electric vehicle charging stations, underground utilities, drainage basins, site lighting, site landscaping, retaining walls, fencing, and project identification signs. The proposed site plans are shown in Figure 2, Figure 3, and Figure 4 on the following pages.
FIGURE 2: OVERALL SITE PLAN

FIGURE 3: LOT 1 SITE PLAN
FIGURE 4: LOT 6 SITE PLAN

BUILDING A1 (32-PLEX)
- Total 32 units
- Rear-loaded
- 3 Stones

Trash Enclosure
Recycling & Organics
Emergency Vehicular Access
ATTACHMENT 3
ANALYSIS

The following sections provide an analysis of the applicant’s proposal. Staff’s analysis includes:

A. General Plan Amendment and Rezone
B. Planned Development Permit
 - Development Standards
 - Building Architecture and Design
 - Signage
C. Traffic/Access/Circulation
D. Parking
E. Noise Impacts
F. Walls/Fencing
G. Site Lighting
H. Trash/Recycling
I. Existing and Proposed Landscaping
J. Conformance with Relevant Folsom General Plan Objectives and Policies
K. Native American Consultation

A. General Plan Amendment and Rezone

General Plan Amendment and Rezone
The Folsom Corporate Center Apartments project is comprised of two separate parcels, Lot 1, which is 7.24-acres in size and Lot 6, which is 4.68-acres in size. Lot 1 and Lot 6 each have a General Plan land use designation of IND (Industrial/Office Park). As shown on Attachment 6, the proposed project includes a request to change the General Plan land use designation for both parcels from IND (Industrial/Office Park) to MHD (Multi-Family High Density). Lot 1 currently has a Zoning designation M-L PD (Limited Manufacturing, Planned Development District), while Lot 6 has a zoning designation of BP PD (Business and Professional, Planned Development District). As shown on Attachment 7, the proposed project includes a request to change the zoning designation for Lot 1 from M-L PD (Limited Manufacturing, Planned Development District) to R-4 PD (General Apartment, Planned Development District) and to change the zoning designation of Lot 6 from BP PD (Business and Professional, Planned Development District) to R-4 PD (General Apartment, Planned Development District). With approval of the proposed amendments and rezones, the entire project site will have a General Plan land use designation of MHD and a Zoning designation of R-4 PD.
The project is consistent with both the proposed General Plan land use designations and the proposed zoning designations, as multi-family apartments are identified as a permitted land use within the Folsom Municipal Code (FMC, Section 17.18.020 Permitted Uses). The proposed project includes a density of 21.2 dwelling units per acre, is consistent with the allowable density range (20-30 dwelling units per acre) established by the General Plan for Multi-Family High Density (Table LU-1: Residential Designations). In addition, the proposed project meets the development requirements established by the Folsom Municipal Code (FMC, Chapter 17.18, General Apartment District) and the Folsom Corporate Center Planned Development Guidelines with some minor modifications (discussed within the Planned Development Permit section of this staff report). Proposed modifications to development standards include lot area, lot width, building coverage, building height, building setbacks, and parking, which are discussed in the Planned Development Permit section of this staff report.

In reviewing the proposed General Plan Amendment and the Rezone, staff took into consideration community benefits that the proposed apartment project will provide relative to the supply of new housing units. City staff also considered the changes in the region’s office and housing markets over the past 10 to 15 years. According to the California Department of Housing and Community Development (HUD), the state of California is facing a severe shortage with regard to housing supply, with some estimates indicating a shortfall of up to 3.5 million housing units. The housing shortage has a number of significant negative effects including but not limited to causing housing prices to rise which limits affordability, and increasing the homeless population in communities. The benefit of the proposed project is that it will increase the City’s housing supply by providing 253 new market-rate rental units along the Iron Point Road corridor in close proximity to jobs and services in that area of the City.

Cole Partners, who is the original developer of the 900,000-square-foot Folsom Corporate Center, described efforts to bring new medical and office uses to the Folsom area over the last two decades. Since inception of the Corporate Center in 2000, the development has attracted prominent medical and office companies including Kaiser Permanente, Micron, and SAFE Credit Union. However, the applicant describes changing regional market dynamics over the last decade (changes in technology, acceptable of telecommuting, etc.) with the interest in housing projects far outpacing the demand for new office development. It has been more than 12 years since any new major office buildings (Waste Connections/SAFE Credit Union and Numonyx/Micron) were constructed within the Corporate Center. Notably, these two office buildings are the last privately developed larger suburban office buildings completed not only in Folsom, but along the Highway 50 corridor. While the office market dynamic has changed in a negative way, the regional demand for housing (single-family and multi-family) continues to remain extremely strong, especially in Folsom with a range of multi-family projects...
(Alder Creek Apartments, Avenida Senior Apartments, Mangini Ranch Apartments, Scholar Way Apartments, etc.) being approved recently. Based on these factors, staff has determined that the proposed changes in land use and zoning are warranted.

Land Use Compatibility

In evaluating the General Plan Amendment and the Rezone, staff also took into consideration the compatibility of the proposed project relative to existing land uses in the project area. The proposed project is located on two undeveloped parcels within the Folsom Corporate Center. The project site is bounded by Iron Point Road to the north with single-family residential development (Broadstone Unit No. 2) and multi-family residential development (Sherwood Apartments) beyond, U.S. Highway 50 to the south with undeveloped properties within the Folsom Plan Area beyond, multi-family development (Revel Senior Living and CountryHouse Memory Care) to the west with future Oak Avenue Parkway extension and commercial development beyond, and commercial development to the east with East Bidwell Street Beyond.

The most prominent land uses in the immediate project area are professional office-related and include SAFE Credit Union, Micron, Kaiser Permanente, and HDR. Residential land uses in close proximity to the site include the Broadstone Unit No. 2 Subdivision (approximately 150 feet to the north across Iron Point Road), Sherwood Apartments (approximately 400 feet to the northeast across Iron Point Road), and Revel Senior Living Apartments (approximately 500 feet to the west). Medical-office related land uses in the project vicinity include the aforementioned Kaiser Permanente Medical Office facility and the Kaiser Permanente Surgery Center. The nearest retail commercial development (Folsom Gateway Shopping Center, which was also developed by a Cole-related entity) is located approximately 1,200 feet to the east of the project site. Additional retail commercial development is located north of Iron Point Road (Palladio at Broadstone), approximately 3,100 feet east of the project site. Both retail commercial developments include grocery stores and a variety of retail shops.

As described above, the project site is situated in a unique location that includes a wide array of land uses including professional offices, medical offices, retail shopping, multi-family apartments, single-family residences, and a memory care facility. As mentioned within the project description, the Folsom Corporate Center Apartments project is a market-rate apartment community providing living opportunities for residents within 253 apartment units. Given the residential nature of the proposed use, staff has determined that the proposed project will be complimentary to the existing multi-family and single-family residential land uses located in the immediate project vicinity. In addition, taking into account the basic needs of the apartment residents, staff has determined that the proposed project is well-situated to take advantage of the numerous goods (grocery stores, restaurants, and retail shops) and services (medical offices) and job opportunities.
that are located within walking distance of the site.

B. Planned Development Permit

The purpose of the Planned Development Permit process is to allow greater flexibility in the design of integrated developments than otherwise possible through strict application of land use regulations. The Planned Development Permit process is also designed to encourage creative and efficient uses of land. The following are proposed as part of the applicant’s Planned Development Permit:

- Development Standards
- Building Architecture and Design
- Signage

Development Standards
The Folsom Corporate Center includes development standards that were intended to guide commercial development and did not take into account that residential development might occur within the boundaries of the Corporate Center. As a result, the applicant’s intent with the subject application is to create a set of unique set of development standards that are better suited for multi-family residential development, yet still generally comply with the development standards established for properties within the Folsom Corporate Center as well as being consistent with the development standards established for properties within the General Apartment (R-4) zoning district. Table 1 lists the existing and proposed development standards for the Folsom Corporate Center Apartments project.

TABLE 1: DEVELOPMENT STANDARDS TABLE

<table>
<thead>
<tr>
<th>Development Standards Table</th>
<th>Lot Area</th>
<th>Lot Width</th>
<th>Front Yard Setback</th>
<th>Rear Yard Setback</th>
<th>Side Yard Setbacks</th>
<th>Building Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folsom Corporate Center Apartments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Standards</td>
<td>0.5-Acres</td>
<td>NA</td>
<td>30 Feet Iron Point Rd.</td>
<td>NA</td>
<td>5 Feet</td>
<td>60 feet</td>
</tr>
<tr>
<td>R-4 District Standards</td>
<td>6,000 S.F.</td>
<td>60 Feet</td>
<td>20 Feet</td>
<td>10 Feet</td>
<td>5 Feet/10 Feet</td>
<td>50 Feet</td>
</tr>
<tr>
<td>Proposed Standards</td>
<td>0.5-Acres</td>
<td>60 Feet</td>
<td>40 Feet Iron Point Rd. 20 Feet</td>
<td>15 Feet</td>
<td>15 Feet</td>
<td>41 feet</td>
</tr>
</tbody>
</table>

As shown in Table 1, the proposed project meets or exceeds all development standards established for the Folsom Corporate Center and for the R-4 (General Apartment) zoning district. However, the proposed project does deviate from one guideline that is not shown in the table above. The Folsom Corporate Center Planned Development Guidelines
recommend that a 30-foot-wide landscape buffer be provided along the Iron Point Road frontage. Due to site constraints (topography, shape, etc.), the applicant is proposing to reduce the width of the landscape buffer (17-21 feet) along the eastern portion of the Lot 6 frontage with Iron Point Road, while at the same time expanding the width of the buffer (41-43 feet) along a greater length of the western portion of the Lot 6 frontage with Iron Point Road. With this proposed landscape modification, the average width of the landscape buffer along Iron Point Road would exceed 30 feet. Staff supports this landscape modification as the total amount of landscaping along the Iron Point Road frontage will be increased.

Building Architecture and Design
As detailed in the Project Description section of this report, the proposed project includes development of 11 three-story apartment buildings and two clubhouse buildings on two separate parcels within the Folsom Corporate Center. The design concept for the apartment building and clubhouse buildings features a modern contemporary architectural style with strong articulation of building forms and massing, both of which are used to break up the scale of the buildings. Proposed building materials include stucco walls, stone veneer wainscoting, metal canopies, glass railing, and metal railing. The color scheme for the buildings is proposed to be primarily earth tone, with prominent use of gray and brown colors accented by a mixture of lighter colors including white and tan. Proposed elevations and renderings of the apartment and clubhouse buildings are shown in the exhibits below and on the following pages.

FIGURE 5: BUILDING ELEVATIONS (16-PLEX)
FIGURE 6: BUILDING ELEVATIONS (21-PLEX)

FIGURE 7: BUILDING ELEVATIONS (26-PLEX)
FIGURE 8: BUILDING ELEVATIONS (32-PLEX)

FIGURE 9: CLUBHOUSE BUILDING ELEVATIONS (LOT 1)
FIGURE 10: CLUBHOUSE BUILDING ELEVATIONS (LOT 6)

FIGURE 11: BUILDING RENDERINGS (LOT 1)
The proposed project is subject to the Folsom Corporate Center Design Guidelines. The Design Guidelines, in respect to overall architectural design concepts, are intended to provide a framework for design, while not restricting creativity. The following are design parameters recommended by the Design Guidelines to ensure a high-level quality of development:

- Buildings should be responsive to views from all four elevations
- Building masses should be made human in scale, present varied elevations, and use accent materials to add variety
- Building materials such as tile, stone, glass, metal panels, and concrete should be utilized together to reflect the area’s modernity, diversity, and traditions.
- Building entries shall be distinguished with accent materials such as stone, slate, color metal panels, or concrete.

In addition to the Folsom Corporate Center Design Guidelines, the proposed project is subject to the City’s Design Guidelines for Multi-Family Development. The Design Guidelines for Multi-Family Development recommend that multi-family projects be designed in a manner that compliments the surrounding community. The following are some of the specific design recommendations suggested by the Design Guidelines:

- Variety and distinctness in design are desirable.
• Expanse of uninterrupted wall area and unbroken roof forms shall be discouraged. Balconies, porches, bay windows, chimneys, and other design elements with projections and varied setbacks shall be used to break up the physical characteristics of structures.

• The use of a variety and combination of building materials is encouraged. Building materials selected for multi-family projects shall be very durable and require low maintenance including, but not limited to, stucco, stone, and brick. Building materials shall integrate quality design elements consistent with the design of the development and the surrounding neighborhood.

• Exterior building colors shall be compatible with the surrounding neighborhood setting and shall not be out of character or in visual competition with the existing surrounding design elements.

• All accessory structures, including carports, garages, and solid waste enclosures, shall be designed with materials and in a manner consistent with the architectural design characteristics of the development.

As illustrated on the building elevations and color renderings (Attachments 15 and 16), the proposing apartment and clubhouse buildings incorporate many of the key design features recommended by the Folsom Corporate Center Design Guidelines and the Design Guidelines for Multi-Family Development including the use of rectilinear building shapes to create a sense of depth, use of varied forms to create visual relief, use of staggered building elements to create visual interest, and the inclusion of unique design details to reinforce the modern contemporary residential design theme.

As shown on the color and materials board (Attachment 17), the proposed project utilizes a variety of modern building materials to enhance the appearance of the building including the use of stucco on the walls, stone veneer wainscoting, glass windows and doors, metal canopies, glass railing, and metal railing. As recommended by the Design Guidelines, the proposed project features a natural color scheme with extensive use of earth tone colors including gray and brown, complimented with lighter colors including white and tan.

Based on the aforementioned analysis, staff has determined that the proposed project represents a high-quality design that is consistent with the design recommendations of the Folsom Corporate Center Design Guidelines and the Design Guidelines for Multi-Family Development. In addition, staff has determined that the project design is complimentary to the design of existing commercial and residential buildings in the immediate project area. As a result, staff recommends approval of the applicant’s design with the following conditions:

1. This approval is for 11 three-story apartment buildings and two clubhouse buildings associated with the Folsom Corporate Center Apartments project. The
applicant shall submit building plans that comply with this approval and the attached building elevations and color renderings dated November 16, 2021.

2. The design, materials, and colors of the proposed Folsom Corporate Center apartment and clubhouse buildings shall be consistent with the submitted building elevations, color renderings, materials samples, and color scheme to the satisfaction of the Community Development Department.

3. Brick pavers or another type of colored masonry material (ADA compliant) shall be used to designate pedestrian crosswalks on the project site, in addition to where pedestrian paths cross drive aisles, and shall be incorporated as a design feature at the two primary driveway entrances for Lot 1 and Lot 6 to the satisfaction of the Community Development Department.

4. Roof-mounted mechanical equipment, including satellite dish antennas, shall not extend above the height of the parapet walls. Ground-mounted mechanical equipment shall be shielded by landscaping or trellis type features.

5. Utility equipment such as transformers, electric and gas meters, electrical panels, and junction boxes shall be screened by walls and or landscaping.

These recommendations are included in the conditions of approval (Condition No. 60) presented for consideration by the Planning Commission.

Signage
The proposed project includes placement of three monument signs at strategic locations within the project site. The first monument sign is proposed to be located on a decorative six-foot-tall wall within a landscaped area at the southwest corner of Iron Point Road and private driveway entrance into the Folsom Corporate Center. The second and third monument signs are proposed to be located on decorative six-foot-tall walls at their respective driveway entrances to Lot 1 and Lot 6. In terms of design, the monument signs will include individual letters made of metal with copy reading “Iron Point Apartment Homes”. The monument signs, which are six-feet-tall and will include approximately 24 square feet of sign area each, will be indirectly illuminated. Staff has determined that the design of the proposed monument identification signs is complementary to the design of the proposed Folsom Corporate Center Apartments.

The Folsom Municipal Code (FMC, Section, 17.50.040 D) states that monument identification signs are an acceptable form of identification for multi-family residential projects. The Folsom Municipal Code also states that multi-family residential projects are permitted one freestanding sign that is a maximum of six-feet-tall with a maximum sign area of 32 square feet. Through the Planned Development Permit process, the applicant is seeking approval for three monument signs to provide identification for the proposed
project. Staff has determined that three monument signs are appropriate based on a number of factors including lack of direct access to the project site from Iron Point Road, the project having two distinct driveway entrances in different locations, and the large physical scale of the apartment community. Staff recommends that the owner/applicant obtain a sign permit prior to installation of the three monument signs. Condition No. 62 is included to reflect this requirement.

C. Traffic/Access/Circulation

Existing Roadway Network

General access to the Folsom Corporate Center and the project parcels is provided by three existing driveways located on the south side of Iron Point Road. The westerly driveway is restricted to vehicle right-turn in and right-turn out movements only. The central driveway, which is located at the signalized intersection of Iron Point Road and Rowberry Drive, allows all vehicle turning movements. The easterly driveway allows vehicle right-turn in, right-turn out, and left-turn in movements only.

Significant roadways in the project vicinity include Iron Point Road, Oak Avenue Parkway, Broadstone Parkway, and Rowberry Drive. Iron Point Road is an east-west arterial roadway with a raised median that runs from Folsom Boulevard to the eastern city limit along the north side of U.S. Highway 50. Within the vicinity of the project site, Iron Point Road (45 mph posted speed limit) has six lanes, bike lanes, sidewalk, curb, and gutter. Oak Avenue Parkway (45 mph posted speed limit) is a north-south arterial that extends from Willow Creek Drive to Iron Point Road. Oak Avenue Parkway is a four-lane urban arterial road between Willow Creek Drive and Blue Ravine Road, a six-lane urban arterial road between Blue Ravine Road and Riley Street, and a four-lane urban arterial road between Riley Street and Iron Point Road. Broadstone Parkway (45 mph posted speed limit) in the project vicinity is a four-lane east-west arterial, that wraps around the back of the Palladio at Broadstone Shopping Center from Iron Point Road to connect with Empire Ranch Road near the Sacramento-El Dorado County line. Rowberry Drive is a north-south two-lane local road that runs northward from the Kaiser Permanente Medical Offices into neighborhoods to the north of Iron Point Road. A future extension of Rowberry Drive across U.S. Highway 50 and into the Folsom Plan Area is planned for the future.

The traffic, access, and circulation analysis associated with the proposed project is based on the results of a Transportation Impact Study that was prepared in February 2022 by T. Kear Transportation Planning and Management, Inc. The transportation study analyzed traffic operations at the following 17 study intersections in the vicinity of the project site:

- Prairie City Road/U.S Highway 50 Eastbound Ramps
- Prairie City Road/U.S. Highway 50 Westbound Ramps
- Prairie City Road/American Aggregates Road
Six different scenarios were evaluated in reviewing traffic operations at the 17 aforementioned study intersections including: Existing 2021 without Project Condition, Existing 2021 with Project Condition, Existing Plus Approved Projects (EPAP) 2026 without Project Condition, EPAP 2026 with Project Condition, Cumulative 2035 without Project Condition, and Cumulative 2035 with Project Condition.

The proposed Folsom Corporate Center Apartments project is expected to generate a total of 81 vehicle-trips during the weekday AM peak hour and 104 vehicle-trips during the weekday PM peak hour trips. Overall, the proposed project is projected to generate a total of 1,376 daily vehicle trips. Based on the projected volume of project-related vehicle trips, the Transportation Study concluded that the proposed project would not have a significant impact on vehicle level of service (LOS) at any of the 17 study intersections. In addition, the Transportation Study determined that the proposed project would not have a significant impact relative to Vehicle Miles Traveled (VMT).

While the Transportation Study determined that the proposed project would not have any significant impacts on study intersections relative to LOS and VMT, the Study did indicate that the project would result in a queueing deficiency (project would add 1 vehicle to a queue that already exceeds available storage) in the AM Peak Hour for the westbound left-turn lanes at the intersection of Prairie City Road and Iron Point Road under two different study scenarios (Existing 2021 Conditions with Project and EPAP 2026 Conditions with Project). To address this impact and reduce the vehicle queuing caused by the proposed project, the Transportation Study recommends the following measure (Condition No. 51) be implemented:

- The owner/applicant shall modify Prairie City Road/ Iron Point Road signal timing plan by shifting 1 second from the eastbound through movement to the westbound left turn movement, reduce the vehicle extension setting from adding five to six additional seconds to the green phase for through movements to adding four
seconds to the green phase for through movements for each vehicle passing the detector after the minimum green phase length has been exceeded. This mitigation measure shall be implemented by the City through the reimbursement agreement with the owner/applicant to cover any City costs. The implementation of this mitigation measure shall occur prior to issuance of the first building permit.

Project Access and On-Site Circulation

As shown on the submitted site plans (Attachments 8 and 9), access to the project area (Folsom Corporate Center) is provided by three existing driveways located on the south side of Iron Point Road. Primary vehicle access to Lot 1 is provided by a new driveway on south side of an existing private ring road with secondary access accommodated by two emergency vehicle access driveways also situated on the south side of the ring road. Primary vehicle access to Lot 6 is provided by a new driveway on the north side of the private ring road with secondary access served by an emergency vehicle access driveway also positioned on the north side of the ring road. Each of the project driveways will accommodate all vehicle turning movements into and out of the respective sites. In addition, all project driveways will have access controlled by a vehicle gate. Internal vehicle circulation is provided by 27-foot-wide drive aisles that accommodate movement in and around the project sites. Pedestrian circulation is provided by a combination of new sidewalks and existing sidewalks located along the private ring road and also along Iron Point Road. Internal pedestrian circulation is accommodated by a series of new pedestrian pathways that provide connectivity to the apartment buildings, the clubhouse building, and the perimeter sidewalks. Access and circulation exhibits for the proposed project are shown in the figures on the following pages.
FIGURE 13: OVERALL ACCESS AND CIRCULATION EXHIBIT

Legend

Blue Line: Vehicle Access
Red Line: Pedestrian Access
Green Line: Future Trail and Connection
FIGURE 14: LOT 1 ACCESS AND CIRCULATION EXHIBIT

Legend
Blue Line: Vehicle Access
Red Line: Pedestrian Access
Green Line: Future Trail and Connection
FIGURE 15: LOT 6 ACCESS AND CIRCULATION EXHIBIT L 6

Legend

Blue Line: Vehicle Access
Red Line: Pedestrian Access

The Transportation Impact Study prepared for the proposed project evaluated the internal operation and configuration of the project access system in terms of right-turn deceleration lanes and tapers for driveways, minimum required driveway throat depth, emergency vehicle access, and entry gate queuing. As referenced previously within this report, the project parcels are accessed via private roadways within the Folsom Corporate Center. Access to City streets (Iron Point Road) is not being modified by the proposed project, thus the City’s requirements for right-turn tapers and deceleration lanes are not applicable. Additionally, the Study determined that vehicle speeds and volumes within the Folsom Corporate Center’s internal roadway network do not create a safety issue that would necessitate right-turn tapers and deceleration lanes at either of the internal project driveways.

As noted earlier, access to the two project parcels is provided by an existing private roadway network within the Folsom Corporate Center. As a result, the City’s minimum required throat depth is not applicable. That being said, the Study determined that the design and throat depth of each of the proposed project driveways was acceptable and
would function appropriately. In terms of emergency vehicle access, there are three
gated emergency vehicle access driveways proposed to serve the proposed project. In
addition, the project’s internal drive isles have 25-foot inner/50-foot outer minimum turning
radii to accommodate all fire and police department access. Based on this information,
the Study determined that adequate emergency vehicle access is being provided for the
project.

Primary vehicle access to Lot 1 is provided by a new driveway on south side of an existing
private ring road and primary vehicle access to Lot 6 is provided by a new driveway on
the north side of the private ring road. Both of these project driveways will have access
controlled by a vehicle gate. As shown on the submitted Individual Site Plans and Details
(Attachment 9), the two project driveways have been designed to accommodate queuing
of up to three vehicles for entry into the respective sites. The Study determined that the
design of the two project driveways provides adequate queuing space for vehicles
entering the project sites.

To ensure implementation of the traffic control and pedestrian circulation measures
identified on the submitted site plans, staff recommends the following recommendations
be included as conditions of approval for the project (Condition No. 52):

- A “stop” sign and appropriate pavement markings shall be installed at the
 internal approach to the private ring road at the two primary project driveways.

- The vehicle entry gates at the two primary project driveway locations shall open
 inward, away from the private ring road or retract sideways. In addition, the
design of the vehicle entry gates and the vehicle entry gate area shall conform
to all requirements established by the City of Folsom for gated multi-family
residential developments.

- If vehicles are observed backing up into the private ring road at either of the
two gated primary project entries, City staff will evaluate and require
appropriate measures to alleviate the traffic congestion including but not limited
to requiring the two project entry gates to remain open during the AM (7:00 a.m.
to 9:00 a.m.) and PM (4:00 p.m. to 6:00 p.m.) peak hours on weekdays.

- Residents of the Folsom Corporate Center Apartments project shall be issued
remote transmitters to allow them to open the entry gates without needing to
stop to enter a code in the keypad at either entrance location.

- The owner/applicant shall provide at least one pedestrian connection from Lot
1 to the southern property boundary to allow for a connection to the future Class
I bicycle trail expected to be located within the 50-foot-wide landscape
easement between the project site and U.S. Highway 50.
Traffic Safety Committee
The proposed project was reviewed by the Traffic Safety Committee at its January 27, 2022 meeting. Upon a thorough review of the project’s Site Plan and Access and Circulation Plan, the Committee made two recommendations relative to vehicle circulation and pedestrian circulation. With respect to vehicle circulation, the Committee recommended that the applicant evaluate implementing a traffic or right-of-way control solution (round-a-bout, stop-sign control, etc.) in the vicinity of the Lot 1 primary driveway and the two driveways across the private road on the Kaiser Permanente Medical Campus site due to the odd angles and configuration of this intersection. With regard to pedestrian circulation, the Committee recommended that the applicant evaluate providing improved pedestrian access between Lot 1 and Iron Point Road in the vicinity of the westernmost Kaiser Permanente project driveway.

Subsequent to the Traffic Safety Committee meeting, City staff met with the project applicant and the traffic consultant to discuss the two recommendations of the Committee. In relation to providing a traffic control solution near the primary entrance to Lot 1, the traffic consultant indicated that the volume of traffic at this location does not warrant the installation of a traffic control solution. In addition, it was determined that installation of any type of traffic control feature at this location would require off-site improvements on property that owned by the applicant. Based on this feedback, staff has determined that construction of traffic control feature near the Lot 1 driveway entrance is not necessary nor feasible.

In reviewing the possibility of providing improved pedestrian access between Lot 1 and Iron Point Road, City staff identified numerous challenges. Specifically, the construction of pedestrian pathway from Lot 1 to Iron Point Road near the westernmost Kaiser Permanente driveway would require a significant number of off-site improvements on property owned by Kaiser Permanente, not the applicant. In addition, construction of pedestrian walkways in this area would be extremely difficult due to the severe change in grade between Lot 1 and Iron Point Road. Lastly, the construction of a pedestrian walkway in this area would like required encroachment into a number of open space parcels containing Oak trees and sensitive habitat. Based on these factors, staff has determined that construction of new pedestrian pathways between Lot 1 and Iron Point Road is not feasible. Of note, Lot 1 in conjunction with the Dialysis Clinic (which is currently under construction) will construct additional sidewalk that would allow for pedestrian access to Iron Point along Rowberry and the eastern edge of the Kaiser Permanente property.

D. Parking
The Folsom Municipal Code (Section 17.18.110 Parking) requires 1.5 parking spaces per unit for multi-family structures and complexes located within the R-4 (General Apartment Zoning District) zoning district. The Design Guidelines for Multi-Family Development require that multi-family apartment developments provide 1.5 parking spaces for studio
and one-bedroom units, 1.75 parking spaces for two-bedroom units, 2.0 parking spaces for three-bedroom units, and 1 guest parking space for every 5 apartment units.

As noted in the Project Description, the proposed project includes a total of 253 apartment units including 16 studio units, 126 one-bedroom units, 97 two-bedroom units, and 14 three-bedroom units. As shown and described on the submitted site plan, the proposed project provides a total of 491 parking spaces including 120 integrated garage parking spaces, 133 carport covered parking spaces, and 238 uncovered surface parking spaces. Based on this parking information, Staff has determined that the proposed project meets the parking requirements established by the Folsom Municipal Code by providing 491 parking spaces whereas 379 parking spaces are required. In addition, staff has determined that the proposed project meets the parking recommendations of the Design Guidelines by providing 491 parking spaces whereas 462 parking spaces are recommended.

The Folsom Municipal Code (FMC, Section 17.57.090) requires multi-family residential developments to provide one bicycle parking space for every five dwelling units. The proposed project features 55 bicycle parking spaces including 31 bicycle storage room in the Lot 6 clubhouse building, 20 bicycle parking spaces in bicycle storage room in the Lot 1 clubhouse building, and 4 additional bicycle parking distributed throughout both project parcels. In addition to the dedicated bicycle storage facilities, bicycle parking opportunities are provided in each of the 120 integrated garages on the project site. Staff has determined that the proposed project meets the bicycle parking requirements established by the Folsom Municipal Code (FMC, Section 17.57.090) by providing 55 bicycle parking spaces whereas 51 bicycle parking spaces are required.

E. Noise Impacts

Based on the proximity of the project site to U.S. Highway 50, Iron Point Road, and existing commercial land uses within the immediate project vicinity, acoustical measurements and modeling were preliminarily prepared by Bollard Acoustical on May 3, 2021 and bolstered by Helix Environmental Planning on February 23, 2022 to analyze potential noise impacts at the proposed Folsom Corporate Center Apartments project site. The purpose of the noise analysis was to quantify existing noise levels associated with traffic on U.S. Highway 50 and Iron Point Road, and to compare those noise levels against the applicable City of Folsom noise standards for acceptable noise exposure at the project site. In addition, noise generated by the proposed project including construction activities, on-site parking/circulation, and mechanical equipment noise, was also evaluated in the noise analysis. Two aspects of noise impacts were evaluated relative to the proposed apartment project, noise directed at the proposed project, and noise caused by the proposed project. As noted previously, the predominant existing noise sources in the project vicinity that cause
an impact to the project site are from vehicles traveling on U.S. Highway 50 and Iron Point Road, as well as background noises from adjacent nearby commercial land uses. Potential noise impacts that might result from development of the Folsom Corporate Center Apartments project community are construction-related activities and operational activities. Construction-related noise would have a short-term effect, while operational noise would continue throughout the lifetime of the project.

The Noise Element of the City of Folsom General Plan regulates noise emissions from public roadway traffic on new development of residential or other noise sensitive land uses. The Noise Element states that noise from traffic on public roadways shall not exceed 65 CNEL for outdoor use areas and 45 CNEL for interior use areas. To evaluate such potential noise impacts to the proposed project, Bollard Acoustical conducted ambient noise measurements to calibrate the predictive noise modeling program that estimates noise levels based on estimated future traffic noise affecting the project site.

As stated above, a significant direct noise impact would occur if traffic-related noise levels exceed 65 CNEL at the proposed project's designated outdoor use areas (outdoor pool/amenity areas). The noise modeling program determined that the outdoor noise level at the clubhouse area on Lot 1 would be 65 CNEL, while the outdoor noise level at the clubhouse area on Lot 6 would be 63 CNEL. Based on these projected noise levels at the project two exterior use areas, staff has determined that the proposed project would comply with the City’s exterior noise threshold.

As referenced above, a significant direct noise impact would also occur if the project’s interior use areas would be exposed to noise levels greater than 45 CNEL from roadway traffic. A 45 CNEL interior limit would be achieved if exterior locations are exposed to a noise level of 60 CNEL or less, based on a typical attenuation of 15-20 dB by standard residential building construction. The noise modeling program determined that three buildings on Lot 1 (Buildings 1, 2, and 7) and two buildings on Lot 6 (Buildings 2 and 5) would potentially exceed the City’s interior noise level standard of 45 CNEL. To reduce these potential noise impacts to a less than significant level and comply with the City’s interior noise level standards, staff recommends that the following measures be implemented (Condition No. 56).

- For habitable areas (both living rooms and bedrooms) with a direct line-of-sight to U.S. Highway 50 for Lot 1 and Iron Point Road for Lot 6, the following measures shall be incorporated in the design of the project to reduce interior noise levels to 45 CNEL or less:
 - Lot 1 (Buildings 1 and 2) and Lot 6 (Building 2) – Minimum exterior wall requirement of STC 46.
 - Lot 1 (Buildings 1 and 2) and Lot 6 (Building 2) – Minimum window and glass sliding door requirement of STC 35.
Lot 1 (Building 7) and Lot 6 (Building 5) – Minimum window and glass sliding door requirement of STC 28.

The building design shall include a mechanical ventilation system that meets the criteria of the International Building Code (Chapter 12, §1203.3 of the 2013 California Building Code) to ensure that windows would be able to remain permanently closed.

Construction of the Folsom Corporate Center Apartments project would temporarily increase noise levels in the project vicinity during the construction period, which would take approximately 20 to 26 months. Construction activities, including site clearing, excavation, grading, building construction, and paving, would be considered an intermittent noise impact throughout the construction period of the project. The City’s Noise Ordinance excludes construction activities from meeting the General Plan Noise Element standards, provided that all phases of construction are limited to the hours between 7:00 a.m. and 6:00 p.m. on weekdays, and between 8:00 a.m. and 5:00 p.m. on Saturdays. To ensure compliance with the City’s Noise Control Ordinance and General Plan Noise Element, staff recommends that hours of construction operation be limited from 7:00 a.m. to 6:00 p.m. on weekdays and 8:00 a.m. to 5:00 p.m. on Saturdays with no construction permitted on Sundays or holidays. In addition, staff recommends that construction equipment be muffled and shrouded to minimize noise levels. Condition No. 55 is included to reflect these requirements.

Operational noises generated by the proposed project include sounds associated with new vehicle trips, vehicle parking, and mechanical equipment associated with the apartment project. Persons and activities potentially sensitive to noise in the project vicinity include residents within the Broadstone Unit No. 2 Subdivision (150 feet north across Iron Point Road) across Iron Point Road to the north of the project site, residents within the Sherwood Apartments (approximately 450 northeast of the project site across Iron Point Road), and residents of the Revel Senior Living Apartments (approximately 500 feet to the west). Due to the limited volume of project-generated vehicle trips (81 weekday AM peak hour trips and 104 weekday PM peak hour trips), vehicle noise exposure would increase only slightly as compared to existing conditions in the project vicinity. Based on the significant distance and buffers between the project site and the nearby residential land uses, staff has determined that potential noise impacts relative to these operational noise sources will not be significant.

F. Walls/Fencing

The proposed project includes the construction of retaining walls and fencing. As shown on the submitted Grading and Drainage Plans (Attachment 11), retaining walls that predominantly range from 1-8 feet in height, with a maximum height of 15 ft at Lot 6 at the northeast corner. The walls are proposed to be constructed in various locations on Lot 1 and Lot 6 due to substantial changes in elevation on the sites. As shown the submitted Landscape Plan and Details (Attachment 12), decorative six-foot-tall metal
open view fencing is proposed to be placed around the perimeter of Lots 1 and 6. In addition to the perimeter fencing, vehicle gates and pedestrian gates are also proposed at various locations on the Lots 1 and 6. Staff recommends that the final location, design, height, materials, and colors of the retaining walls, fences, and gates be subject to review and approval by the Community Development Department. Condition No. 59 is included to reflect this requirement.

G. Site Lighting

As shown on the Preliminary Lighting Plan (Attachment 14), the applicant is proposing to use a combination of pole-mounted parking lot lighting, carport lighting, building-attached lighting, and bollard lights along the walkways on the project site. All lighting would be designed to minimize light/glare impacts to the adjacent properties by ensuring that all exterior lighting is shielded and directed downward. Staff recommends that the final exterior building and site lighting plans be submitted for review and approval by Community Development Department for location, height, aesthetics, level of illumination, glare and trespass prior to the issuance of any building permits. In addition, staff recommends all lighting is designed to be shielded and directed downward onto the project site and away from adjacent properties and public rights-of-way. Condition No. 23 is included to reflect these requirements.

H. Trash/Recycling

The proposed project includes three trash/recycling enclosures to manage trash, recycling, and organics associated with the apartment community. Lot 1 includes one trash/recycling enclosure and one trash compactor, while Lot 6 includes two trash/recycling enclosures. The proposed trash/recycling enclosures, which are constructed of textured concrete masonry blocks with a decorative trim cap, feature metal gates to control access. Staff recommends that the final location, design, materials, and colors of the trash/recycling enclosures be subject to review and approval by the Community Development Department. Condition No. 58 is included to reflect these requirements.

I. Existing and Proposed Landscaping

Lot 1, which is largely undisturbed, is predominantly comprised of non-native annual grassland with a single Oak tree situated in the southeast corner of the site. Lot 1 does include small parking lot area with associated landscaping in the northwest corner of the project site. This small parking lot and landscaped area, which is associated with the adjacent Kaiser Permanente Medical Office Complex, is proposed to remain in place. A 50-foot-wide landscape easement, which is located between the southern boundary of Lot 1 and U.S. Highway 50, is steeply sloped and contains non-native grasses. Lot 6, which has been greatly disturbed by prior grading and stockpiling activities, features non-native grasses with a small stand of Oak trees located in the southwest corner of the site.
A 20-foot-wide landscape easement, which is located within the northern portion of Lot 6 adjacent to Iron Point Road, features a rockery retaining wall and sidewalk with minimal landscaping and non-native grasses.

As shown on the Preliminary Landscape Plans (Attachment 12), the applicant is proposing to install landscaping that features California-native and low water-use trees, shrubs, and groundcover selections intended to comply with the requirements of the Model Water Efficiency Landscape Ordinance (MWELO). Proposed landscape improvements include a variety of drought-tolerant trees, shrubs, and groundcover. Among the proposed trees are; Chinese Pistache, Coast Live Oak, Dwarf Strawberry Tree, Interior Live Oak, Red Crape Myrtle, Redpointe Maple, Sweet Bay, and Swan Hill Olive. Proposed shrubs and groundcover include; Australian Bluebell Creeper, Autumn Sage, Deer Grass, Dwarf Bottlebrush, Dwarf Hawthorne, Heavenly Bamboo, Manzanita, Red Fountain Grass, and Biofiltration Sod. The preliminary landscape plan meets the CALgreen and City shade requirement by providing 50 percent shade in the parking lot area within fifteen years. Staff recommends that the final landscape plans be reviewed and approved by the Community Development Department. Condition No. 36 is included to reflect this requirement.

Oak Tree Preservation and Removal
Chapter 12.16 of the Folsom Municipal Code, the Tree Preservation Ordinance, regulates the cutting or modification of trees, including oaks and specified other trees; requires a Tree Permit prior to cutting or modification; and establishes mitigation requirements for cut or damaged trees. The Tree Preservation Ordinance establishes policies, regulations, and standards necessary to ensure that the City will continue to preserve and maintain its “urban forests”.

An Arborist Report and Arborist Inventory prepared for the proposed project found that the project parcels contain a total of 11 protected native oak trees (oak trees measuring six inches in diameter or larger) including nine Blue Oaks and two Valley Oaks. Of the 11 oak trees mentioned above, one Blue Oak tree located on Lot 6 is recommended for removal due to compromised health and structural defects. The remaining ten native Oak trees, which are located on Lot 6, are identified as being in fair to good condition by the Arborist Report.

As shown on the submitted Landscape Plan, the applicant is proposing to preserve three Oak trees on the project site including a 41” diameter Blue Oak tree (Heritage Tree) on Lot 1 and two Blue Oak trees (30” and 26” in diameter respectively) on Lot 6. The remaining eight oak trees on the project site (southwest corner or Lot 6) are proposed to be removed to allow for development of the proposed project. To offset the loss of the protected native oak trees, the applicant is proposing to plant 35 Mitigation Oak trees (Coast Live Oak and Interior Live Oak) in appropriate locations (through consultation with the City Arborist) on the project site and to pay in-lieu fees for any outstanding Oak tree
mitigation that is required. To mitigate the impact to the protected native Oak trees, staff recommends that the following measures be implemented (Condition No. 37) in accordance with requirements of the Tree Preservation Ordinance:

- A Tree Permit Application containing an Application Form, Tree Protection and Mitigation Plan, and Arborist Report shall be submitted to the City of Folsom by the owner/applicant for issuance of a Tree Work Permit and Tree Removal Permit prior to commencement of any grading or site improvement activities. The tree protection and mitigation plan shall be prepared in collaboration with a qualified arborist and shall be subject to review and approval by the City. The tree protection and mitigation plan shall contain the contact information of the project arborist and shall be included in all associated plan sets for the project.

- Removal of any protected tree shall be mitigated by planting replacement trees and/or payment of “In-Lieu” fees on a diameter inch basis in accordance with FMC, Section 12.16.150. The proposed method of mitigation shall be subject to review and approval by the City.

- Prior to starting construction, oak trees to be preserved shall be fenced with high visibility fencing consistent with the city-approved tree protection and mitigation plan. Parking of vehicles, equipment, or storage of materials is prohibited within the Tree Protection Zone of Protected Trees at all times. Signs shall be posted on exclusion fencing stating that the enclosed trees are to be preserved. Signs shall state the penalty for damage to, or removal of, the protected tree.

- The owner/applicant shall retain the services of a project arborist for the duration of the development project to monitor the health of oak trees to be preserved and carry out the City-approved tree protection plan. All regulated activity conducted within the Critical Root Zone of protected trees, as that term is defined in Folsom Municipal Code (FMC) 12.16.020, shall be performed under the direct supervision of the project arborist. A copy of the executed contract for these arboricultural services shall be submitted to the City prior to the issuance of any tree or grading permits.

- Certification letters by the project arborist atesting compliance with the tree protection and mitigation plan and tree permit conditions shall be submitted to the City at the following stages of the project:

- The owner/applicant shall plant 35 Mitigation Oak Trees on the project site in the locations as shown on the Preliminary Landscape Plans. The final number, location, and type of Mitigation Oak Trees shall be subject to review and approval by the Community Development Department. The owner/applicant shall pay in-lieu fees for any outstanding required Oak Tree Mitigation that is not satisfied through planting of Mitigation Oak Trees.
J. Conformance with Relevant General Plan Goals and Policies

The City of Folsom General Plan (2035) outlines a number of goals, policies, and implementation programs designed to guide the physical, economic, and environmental growth of the City. Staff has determined that the proposed project is consistent with the General Plan goals and policies as outlined and discussed below:

APPLICABLE GENERAL PLAN GOALS AND POLICIES

GP GOAL LU 1.1 (Land Use/Growth and Change)
Retain and enhance Folsom’s quality of life, unique identity, and sense of community while continuing to grow and change.

GP POLICY LU 1.1.12-1 (Infill Development)
Respect the local context: New development should improve the character and connectivity of the neighborhood in which it occurs. Physical design should respond to the scale and features of the surrounding community, while improving critical elements such as transparency and permeability.

The proposed project is consistent with this policy in that the project features significant site and design improvements which will enhance the overall character of the area including introducing new market rate apartment units with a contemporary modern residential design intended to complement the architecture and design of existing residential and commercial buildings in the project vicinity.

GP POLICY LU 1.1.15 (SACOG Blueprint Principles)
Strive to adhere to the Sacramento Regional Blueprint Growth Principles.

The proposed project is consistent with this policy in that the project has been designed to adhere to the primary SACOG Blueprint Principles including Compact Development, Housing Choice and Diversity, Use of Existing Assets, and Quality Design. Compact Development involves creating environments that are more compactly built and use space in an efficient but attractive manner to encourage more walking, biking, and transit use and shorter auto trips. Housing Choice and Diversity includes providing a variety of places where people can live (apartments, townhomes, condominiums, and single-family detached homes) and also creating opportunities for the variety of people who need them such as families, singles, seniors, and people with special needs. Use of Existing Assets entails intensification of the existing use or redevelopment in order to make better use of existing public infrastructure, including roads. Quality Design focuses on the design details of any land development (such as relationship to the street, placement of buildings, sidewalks, street widths, landscaping, etc.), which are all factors that influence the attractiveness of living in a compact development and facilitate the ease of walking within and in and out of a community.
APPLICABLE GENERAL PLAN GOALS AND POLICIES

GP GOAL LU 6.1 (Residential Neighborhoods)
Allow for a variety of housing types and mix of uses that provide choices for Folsom residents, create complete and livable neighborhoods, and encourage walking and biking.

GP POLICY LU 6.1.3 (Efficiency through Density)
Support an overall increase in average residential densities in identified urban centers and mixed-use districts. Encourage new housing types to shift from lower-density, large-lot developments to higher-density, small-lot and multifamily developments, as a means to increase energy efficiency, conserve water, reduce waste, as well as increase access to services and amenities (e.g., open space) through an emphasis on mixed uses in these higher-density developments.

The proposed project is consistent with this policy in that the project is a new market-rate multi-family residential project developed at a residential density of 21.2 units per acre. Its location within Folsom Corporate Center and proximity to the Folsom Gateway retail center will create a compact/horizontal mixed-use development. The proposed project design will be consistent with California Green Building Standards Code (CALGreen), and the residential units are being designed to be all-electric, and the project intends to participate the SMUD SolarShares program. In addition, the proposed project includes electric vehicle charging stations, and will meet or exceed the percentage of electric vehicle capable parking spaces per CALGreen code.

GP GOAL M 4.1 (Vehicle Traffic and Parking)
Ensure a safe and efficient network of streets for cars and trucks, as well as provide an adequate supply of vehicle parking.

GP POLICY M 4.1.3 (Level of Service)
Strive to achieve a least traffic Level of Service “D” (or better) for local streets and roadways throughout the City. In designing transportation improvements, the City will prioritize use of smart technologies and innovative solutions that maximize efficiencies and safety while minimizing the physical footprint. During the course of Plan buildout, it may occur that temporarily higher Levels of Service result where roadway improvements have not been adequately phased as development proceeds. However, this situation will be minimized based on annual traffic studies and monitoring programs. Staff will report to the City Council at regular intervals via the Capital improvement Program process for the Council to prioritize projects integral to achieving Level of Service D or better.

The proposed project is consistent with this policy in that the project will not result in a change in the level of service (LOS) at any of the 17 study intersections. In addition, the proposed project is anticipated to generate less than 82% of the regional per capita Vehicle Miles Traveled (VMT), consistent with new State Law that took effect July 1, 2020 (SB 743).
GP GOAL M 4.2 (Vehicle Traffic and Parking)
Provide and manage a balanced approach to parking that meets economic development and sustainability goals.

GP POLICY M 4.2.4 (Electric Vehicle Charging Stations)
Encourage the installation of electric vehicle charging stations in parking spaces throughout the city, prioritizing installations at multi-family residential units.

The proposed project is consistent with this policy in that the project includes five electric vehicle charging stations to serve electric vehicles of residents and guests. In addition, the applicant has committed to having at least 10 percent of parking spaces be EV Capable. The number of proposed electric vehicle charging stations (5) and percentage of EV Capable parking spaces is consistent with the California Green Buildings Standards Code’s provisions (10 percent of all parking spaces) required to be EV Capable) for multi-family residential development.

GP GOAL H-2 (Removing Barriers to the Production of Housing)
To minimize governmental constraints on the development of housing for households of all income levels.

GP POLICY H 2.7
The City shall educate the community on the needs, the realities and the benefits of affordable and high-density housing.

The proposed project is consistent with this policy in that the project will result in development of a high-density market-rate apartment community on parcels that are not currently zoned for multi-family high density residential development.

K. Native American Consultation (SB 18/AB52)

Senate Bill (SB) 18 was signed into law in September 2004 and became effective in March 2005. SB 18 requires city and county governments to consult with California Native American tribes early in the planning process with the intent of protecting traditional tribal cultural places. In accordance with Government Code 65352.3(a)(2), the City sent project notifications to each of listed tribes on October 26, 2021 and afforded them 90 days to respond and request consultation. The City received a response from one tribe (UAIC-United Auburn Indian Community) who expressed a desire to consult regarding the proposed project. During the consultation process, the City provided UAIC with a Cultural Resources Assessment document that indicated there are no known Tribal Cultural Resources present on the project site. Subsequently, UAIC submitted information to the City that stated that heritage trees, in general, are an important Tribal Cultural Resource. The City responded to UAIC that there is one Heritage Oak Tree on the project site (41” diameter Oak tree on Lot 1) that is intended to be preserved. City staff also responded to UAIC that a mitigation measure (Condition No. 39) will be placed on the project to protect any unanticipated discovery of Tribal Cultural Resources on the project site.
On March 9, 2022, and in accordance with Government Code §65352(a)(11), the City mailed the 45-day referral notices to the listed tribes. No tribes provided comment within that timeframe. The City will mail specific details of the pending City Council public hearing to listed tribes at least 10 days in advance of the meeting, in accordance with Government Code §65092. In summary, the City has assumed and concluded consultation responsibilities in accordance with the Tribal Consultation Guidelines: Supplement to General Plan Guidelines (November 14, 2005) published by the Governor’s Office of Planning and Research.

Assembly Bill (AB 52), which was signed into law in July 2015, requires City or County Governments to consult with California Native American Tribes in order to identify Tribal Cultural Resources that may be significantly impacted by development projects and to avoid or mitigate those impacts. On September 21, 2021, the City sent project notification letters to the three California Native American tribes named on the City’s AB 52 contact list, with the United Auburn Indian Community (UAIC) being the only tribe to respond. The City subsequently initiated consultation with UAIC concurrently with respect to AB 52 and SB 18 as the issues raised by UAIC under these two sets of State regulations were identical. On February 4, 2022, the City concluded the consultation with UAIC with the acknowledgement that measures would be included with the project to ensure protection of the Heritage Oak Tree on Lot 1 and the protection of previously unknown Tribal Cultural Resources on the project site during construction activities.

ENVIRONMENTAL REVIEW

Staff has prepared an Initial Study, Mitigated Negative Declaration, and Mitigation Monitoring and Reporting Program (Attachment 23) for the project in accordance with the California Environmental Quality Act (CEQA) and associated regulations and determined that with the proposed mitigations, the project will not have a significant effect on the environment. The Mitigated Negative Declaration has been prepared and noticed for public comment, and mitigation measures have been included as Conditions of Approval. To date, one written comment has been received from the public during the Mitigated Negative Declaration public review period (March 8, 2022 to April 6, 2022).

On March 24, 2022, the Sacramento Metropolitan Air Quality Management District (SMAQMD) submitted a response letter (Attachment 23) regarding the Initial Study and Mitigated Negative Declaration that was prepared for the proposed project. In the response letter, SMAQMD recommends that additional measures be implemented to protect residents from exposure to toxic air contaminant emissions produced by vehicles traveling on U.S. Highway 50. Specifically, SMAQMD recommends that a continuous landscape buffer or dense landscape plantings be provided along the southern, western, and eastern edges of the project site consistent with the Air District’s Landscaping Guidance for Improving Air Quality Near Roadways. As shown on the submitted Preliminary Landscaped Plans (Attachment 12), the project includes a robust amount of landscaping along the perimeter of the site (Lot 1) adjacent to U.S. Highway
50. However, to further reduce residents’ exposure to air contaminant emissions, staff recommends additional landscape plantings be provided where feasible along the southern, western, and eastern perimeter of Lot 1 to the satisfaction of the Community Development Department. Condition No. 45 is included to reflect this requirement. It is important to note that each of the apartment buildings will have a mechanical ventilation system that accommodates air filters with a minimum efficiency rating to reduce residents’ exposure to air contaminant emissions.

In their letter, SMAQMD also recommends that the proposed project consider implementing additional energy related measures to help reduce the urban heat island effect. Specifically, SMAQMD recommends that certified cool roofs be installed on all of the apartment buildings and that solar photovoltaic shade structures be placed over the parking spaces in the area under the overhead power lines in the western portion of Lot 1. The applicant has indicated that they will be installing certified cool roofs on all of the apartment buildings consistent with CALgreen code requirements. Unfortunately, the placement of solar photovoltaic shade structures over parking spaces in the power line easement area is not feasible due to the fact that these types of structures are permitted by the responsible utility agencies (PG&E and SMUD). However, it is important to reiterate that the applicant intends to participate the SMUD SolarShares program

RECOMMENDATION/PLANNING COMMISSION ACTION
City staff recommends that the Planning Commission recommend City Council approval of this project, subject to the findings and conditions of approval attached to this report.

PLANNING COMMISSION ACTION:

- Adopt the Mitigated Negative Declaration and Mitigation Monitoring and Reporting Program prepared for the Folsom Corporate Center Apartments project (PN 21-120) per Attachment 23; and

- Approve a General Plan Amendment to change the General Plan land use designation for Lot 1 (APN No. 072-3120-023) and Lot 6 (APN No. 072-3120-023) from IND (Industrial/Office Park) to MHD (Multi-Family High Density); and

- Approve a Rezone to change the zoning designation for Lot 1 (APN No. 072-3120-026) from M-L PD (Limited Manufacturing, Planned Development District) to R-4 PD (General Apartment, Planned Development District) and to change the zoning designation of Lot 6 (APN No. 072-3120-023) from BP PD (Business and Professional, Planned Development District) to R-4 PD (General Apartment, Planned Development District); and

- Approve a Planned Development Permit to establish detailed development and architectural standards for the 253-unit Folsom Corporate Center Apartments project.
These recommended approvals are subject to the proposed findings below (Findings A-U) and the conditions of approval (Conditions 1-69) attached to this report.

GENERAL FINDINGS

A. NOTICE OF HEARING HAS BEEN GIVEN AT THE TIME AND IN THE MANNER REQUIRED BY STATE LAW AND CITY CODE.

CEQA FINDINGS

C. A MITIGATED NEGATIVE DECLARATION HAS BEEN PREPARED FOR THE PROJECT IN ACCORDANCE WITH CEQA.

D. THE PLANNING COMMISSION HAS CONSIDERED THE PROPOSED MITIGATED NEGATIVE DECLARATION AND MITIGATION MONITORING AND REPORTING PROGRAM BEFORE MAKING A DECISION REGARDING THE PROJECT.

E. ON THE BASIS OF THE WHOLE RECORD BEFORE THE PLANNING COMMISSION, THERE IS NO SUBSTANTIAL EVIDENCE THAT THE PROJECT, AS CONDITIONED, WILL HAVE A SIGNIFICANT EFFECT ON THE ENVIRONMENT.

F. THE MITIGATED NEGATIVE DECLARATION REFLECTS THE INDEPENDENT JUDGMENT AND ANALYSIS OF THE CITY OF FOLSOM.

G. THE MITIGATED NEGATIVE DECLARATION HAS DETERMINED THAT THE PROPOSED PROJECT, AS CONDITIONED AND CONSISTENT WITH THE REQUIRED MITIGATION MONITORING AND REPORTING PROGRAM, WOULD NOT HAVE A SIGNIFICANT EFFECT ON THE ENVIRONMENT WITH MITIGATION MEASURES.

GENERAL PLAN AMENDMENT FINDINGS

I. THE PROPOSED GENERAL PLAN AMENDMENT IS CONSISTENT WITH THE GOALS, POLICIES AND OBJECTIVES OF THE CITY OF FOLSOM GENERAL PLAN

J. THE PROPOSED GENERAL PLAN AMENDMENT IS CONSISTENT WITH THE OBJECTIVES OF THE LAND USE ELEMENT OF THE CITY’S GENERAL PLAN AND DEVELOPMENT POLICIES.

K. THE PROPOSED GENERAL PLAN AMENDMENT WILL NOT RESULT IN A NET LOSS OF RESIDENTIAL CAPACITY.

L. THE PROPOSED GENERAL PLAN AMENDMENT IS IN THE PUBLIC INTEREST.

M. PURSUANT TO GOVERNMENT CODE SECTION 65352.3, THE CITY CONTACTED ALL CALIFORNIA NATIVE AMERICAN TRIBES ON THE CONTACT LIST MAINTAINED BY THE NATIVE AMERICAN HERITAGE COMMISSION IN ASSOCIATION WITH THIS PROJECT. THE CITY RECEIVED ONE REQUEST FOR CONSULTATION FROM A NATIVE AMERICAN TRIBE, INITIATED CONSULTATION, AND SUBSEQUENTLY CONCLUDED CONSULTATION ON FEBRUARY 4, 2022

REZONE FINDING

N. THE PROJECT IS CONSISTENT WITH THE CITY’S GENERAL PLAN, THE FOLSOM MUNICIPAL CODE, AND THE FOLSOM CORPORATE CENTER PLANNED DEVELOPMENT GUIDELINES AS AMENDED.

PLANNED DEVELOPMENT PERMIT FINDINGS

O. THE PROPOSED PROJECT COMPLIES WITH THE INTENT AND PURPOSES OF CHAPTER 17.38 (PLANNED DEVELOPMENT DISTRICT) OF THE FOLSOM MUNICIPAL CODE AND OTHER APPLICABLE ORDINANCES OF THE CITY.

P. THE PROPOSED PROJECT IS CONSISTENT WITH THE OBJECTIVES, POLICIES AND REQUIREMENTS OF THE DEVELOPMENT STANDARDS OF THE CITY.

Q. THE PHYSICAL, FUNCTIONAL AND VISUAL COMPATIBILITY BETWEEN THE PROPOSED PROJECT AND EXISTING AND FUTURE ADJACENT USES AND AREA CHARACTERISTICS IS ACCEPTABLE.
R. THERE ARE AVAILABLE PUBLIC FACILITIES, INCLUDING BUT NOT LIMITED TO, WATER, SEWER AND DRAINAGE TO ALLOW FOR THE DEVELOPMENT OF THE PROJECT SITE IN A MANNER CONSISTENT WITH THIS PROPOSAL.

S. THE PROPOSED PROJECT WILL NOT CAUSE UNACCEPTABLE VEHICULAR TRAFFIC LEVELS ON SURROUNDING ROADWAYS, AND THE PROPOSED PROJECT WILL PROVIDE ADEQUATE INTERNAL CIRCULATION.

T. THE PROPOSED PROJECT WILL NOT BE DETRIMENTAL TO THE HEALTH, SAFETY AND GENERAL WELFARE OF THE PERSONS OR PROPERTY WITHIN THE VICINITY OF THE PROJECT SITE, AND THE CITY AS A WHOLE.

U. ADEQUATE PROVISION IS MADE FOR THE FURNISHING OF SANITATION SERVICES AND EMERGENCY PUBLIC SAFETY SERVICES TO THE PROJECT.
Attachment 4

Conditions of Approval
CONDITIONS OF APPROVAL FOR THE FOLSOM CORPORATE CENTER APARTMENTS PROJECT (PN 21-120)

GENERAL PLAN AMENDMENT, REZONE, AND PLANNED DEVELOPMENT PERMIT

SOUTH SIDE OF IRON POINT ROAD, SLIGHTLY EAST OF OAK AVENUE PARKWAY

<table>
<thead>
<tr>
<th>1.</th>
<th>The applicant shall submit final site development plans to the Community Development Department that shall substantially conform to the exhibits referenced below:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vicinity Map</td>
</tr>
<tr>
<td>2.</td>
<td>General Plan Amendment Exhibits, dated November 16, 2021</td>
</tr>
<tr>
<td>3.</td>
<td>Rezone Exhibits, dated November 16, 2021</td>
</tr>
<tr>
<td>4.</td>
<td>Overall Site Plan, dated November 16, 2021</td>
</tr>
<tr>
<td>5.</td>
<td>Individual Site Plans and Details, dated February 8, 2022</td>
</tr>
<tr>
<td>7.</td>
<td>Preliminary Grading and Drainage Plans, dated November 16, 2021</td>
</tr>
<tr>
<td>8.</td>
<td>Preliminary Landscape Plans and Details, dated November 16, 2021</td>
</tr>
<tr>
<td>10.</td>
<td>Preliminary Lighting Plan and Details, dated November 16, 2021</td>
</tr>
<tr>
<td>11.</td>
<td>Building Elevations, Floor Plans, and Details dated November 16, 2021</td>
</tr>
<tr>
<td>12.</td>
<td>Color Renderings and Perspectives, dated November 16, 2021</td>
</tr>
<tr>
<td>13.</td>
<td>Color and Materials Board, dated November 16, 2021</td>
</tr>
<tr>
<td>14.</td>
<td>Signage Details, dated November 16, 2021</td>
</tr>
<tr>
<td>15.</td>
<td>Building and Parking Summary, dated February 8, 2022</td>
</tr>
</tbody>
</table>

The project is approved for the development the 253-unit Folsom Corporate Center Apartment Community, which includes 11 three-story apartment buildings, two clubhouse buildings, and associated site improvements. Implementation of the project shall be consistent with the above-referenced items as modified by these conditions of approval.
2.	Building plans, and all civil engineering and landscape plans, shall be submitted to the Community Development Department for review and approval to ensure conformance with this approval and with relevant codes, policies, standards and other requirements of the City of Folsom.	I, B	CD (P)(E)(B)	
3.	The project approvals (Planned Development Permit) granted under this staff report shall remain in effect for two years from final date of approval (April 6, 2024). Failure to obtain the relevant building (or other) permits within this time period, without the subsequent extension of this approval, shall result in the termination of this approval.	B	CD (P)	
4.	The owner/applicant shall defend, indemnify, and hold harmless the City and its agents, officers and employees from any claim, action or proceeding against the City or its agents, officers or employees to attack, set aside, void, or annul any approval by the City or any of its agencies, departments, commissions, agents, officers, employees, or legislative body concerning the project. The City will promptly notify the owner/applicant of any such claim, action or proceeding, and will cooperate fully in the defense. The City may, within its unlimited discretion, participate in the defense of any such claim, action or proceeding if both of the following occur:			
	• The City bears its own attorney’s fees and costs; and			
	• The City defends the claim, action or proceeding in good faith			
	The owner/applicant shall not be required to pay or perform any settlement of such claim, action or proceeding unless the settlement is approved by the owner/applicant.			
5.	√	The owner/applicant shall be required to participate in a mitigation monitoring and reporting program pursuant to City Council Resolution No. 2634 and Public Resources Code 21081.6. The mitigation monitoring and reporting measures identified in the Mitigated Negative Declaration prepared for this project have been incorporated into these conditions of approval in order to mitigate or avoid significant effects on the environment. These mitigation monitoring and reporting measures are identified with a check mark (√) in the mitigation measure column.	G, I	CD (P)(E)

DEVELOPMENT COSTS AND FEE REQUIREMENTS

<p>| 6. | The owner/applicant shall pay all applicable taxes, fees and charges at the rate and amount in effect at the time such taxes, fees and charges become due and payable. | I, B | CD (P)(E) |
| 7. | If applicable, the owner/applicant shall pay off any existing assessments against the property, or file necessary segregation request and pay applicable fees. | B | CD (E) |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>The City, at its sole discretion, may utilize the services of outside legal counsel to assist in the implementation of this project, including, but not limited to, drafting, reviewing and/or revising agreements and/or other documentation for the project. If the City utilizes the services of such outside legal counsel, the applicant shall reimburse the City for all outside legal fees and costs incurred by the City for such services. The applicant may be required, at the sole discretion of the City Attorney, to submit a deposit to the City for these services prior to initiation of the services. The applicant shall be responsible for reimbursement to the City for the services regardless of whether a deposit is required.</td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>9.</td>
<td>If the City utilizes the services of consultants to prepare special studies or provide specialized design review or inspection services for the project, the applicant shall reimburse the City for actual costs it incurs in utilizing these services, including administrative costs for City personnel. A deposit for these services shall be provided prior to initiating review of the improvement plans or beginning inspection, whichever is applicable.</td>
</tr>
<tr>
<td></td>
<td>I, B</td>
</tr>
<tr>
<td>10.</td>
<td>This project shall be subject to all City-wide development impact fees, unless exempt by previous agreement. This project shall be subject to all City-wide development impact fees in effect at such time that a building permit is issued. These fees may include, but are not limited to, fees for fire protection, park facilities, park equipment, Quimby, Humbug-Willow Creek Parkway, Light Rail, TSM, capital facilities and traffic impacts. The 90-day protest period for all fees, dedications, reservations or other exactions imposed on this project has begun. The fees shall be calculated at the fee rate in effect at the time of building permit issuance.</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td>11.</td>
<td>The owner/applicant agrees to pay to the Folsom-Cordova Unified School District the maximum fee authorized by law for the construction and/or reconstruction of school facilities. The applicable fee shall be the fee established by the School District that is in effect at the time of the issuance of a building permit. Specifically, the owner/applicant agrees to pay any and all fees and charges and comply with any and all dedications or other requirements authorized under Section 17620 of the Education Code; Chapter 4.7 (commencing with Section 65970) of the Government Code; and Sections 65995, 65995.5 and 65995.7 of the Government Code.</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>SITE DEVELOPMENT REQUIREMENTS</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12.</td>
<td>Prior to the issuance of any grading and/or building permit, the owner/applicant shall have a geotechnical report prepared by an appropriately licensed engineer that includes an analysis of site suitability, proposed foundation design for all proposed structures, and roadway and pavement design.</td>
</tr>
<tr>
<td>13.</td>
<td>Public and private improvements, including roadways, curbs, gutters, sidewalks, bicycle lanes and trails, streetlights, underground infrastructure and all other improvements shall be provided in accordance with the current edition of the City of Folsom Standard Construction Specifications and the Design and Procedures Manual and Improvement Standards. All necessary rights-of-way and/or easements shall be dedicated to the City of Folsom for these improvements.</td>
</tr>
<tr>
<td>14.</td>
<td>The applicant/owner shall submit water, sewer and drainage studies to the satisfaction of the Community Development Department and provide sanitary sewer, water and storm drainage improvements with corresponding easements, as necessary, in accordance with these studies and the current edition of the City of Folsom Standard Construction Specifications and the Design and Procedures Manual and Improvement Standards.</td>
</tr>
<tr>
<td>15.</td>
<td>The improvement plans for the required public and private improvements shall be reviewed and approved by the Community Development Department prior to issuance of a building permit for the project.</td>
</tr>
<tr>
<td>16.</td>
<td>Final lot and building configurations may be modified to allow for overland release of storm events greater than the capacity of the underground system.</td>
</tr>
<tr>
<td>17.</td>
<td>The owner/applicant shall coordinate the planning, development and completion of this project with the various utility agencies (i.e., SMUD, PG&E, etc.).</td>
</tr>
<tr>
<td>18.</td>
<td>The owner/applicant shall be responsible for replacing any and all damaged or hazardous public sidewalk, curb and gutter along the site frontage and/or boundaries, including pre-existing conditions and construction damage, to the satisfaction of the Community Development Department.</td>
</tr>
<tr>
<td>19.</td>
<td>For any improvements constructed on private property that are not under ownership or control of the owner/applicant, a right-of-entry, and if necessary, a permanent easement shall be obtained and provided to the City prior to issuance of a grading permit and/or approval of improvement plans.</td>
</tr>
<tr>
<td>20.</td>
<td>The on-site water and sewer systems shall be privately owned and maintained. The fire protection system shall be separate from the domestic water system. The fire system shall be constructed to meet the National Fire Protection Association Standard 24. The domestic water and irrigation system shall be metered per City of Folsom Standard Construction Specifications.</td>
</tr>
<tr>
<td>21.</td>
<td>Any reimbursement for public improvements constructed by the applicant shall be in accordance with a formal reimbursement agreement entered into between the City and the owner/applicant prior to approval of the improvement plans.</td>
</tr>
<tr>
<td>22.</td>
<td>The owner/applicant shall dedicate a 12.5-foot-wide public utility easement for underground facilities and appurtenances adjacent to all public rights-of-way. The owner/applicant shall also dedicate any private drive, ingress, and egress easement as a public utility easement for underground facilities and appurtenances. An easement shall also be dedicated to SMUD based on the location of as constructed facilities placed beyond the limits of the private drives.</td>
</tr>
<tr>
<td>23.</td>
<td>Final exterior building and site lighting plans shall be submitted for review and approval by Community Development Department for location, height, aesthetics, level of illumination, glare and trespass prior to the issuance of any building permits. All lighting, including but not limited to free-standing parking lot lights, building-attached lights, and landscape lights shall be designed to be screened, shielded, and directed downward onto the project site and away from adjacent properties and public rights-of-way. The final design of the building-attached lights shall be subject to review and approval by the Community Development Department. Lighting shall be equipped with a timer or photo condenser. In addition, pole-mounted parking lot lights shall utilize a low-intensity, energy efficient lighting method.</td>
</tr>
</tbody>
</table>

STORM WATER POLLUTION/CLEAN WATER ACT REQUIREMENTS

<p>| 24. | The owner/applicant shall be responsible for litter control and sweeping of all paved surfaces in accordance with City standards. All on-site storm drains shall be cleaned immediately before the commencement of the rainy season (October 15). | G, I, B | CD (E) |
| 25. | The storm drain swale or onsite improvement plans shall provide for “Best Management Practices” that meet the requirements of the water quality standards of the City’s National Pollutant Discharge Elimination System Permit issued by the State Regional Water Quality Control Board. | G, I, B, O | CD (E) |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26.</td>
<td>Erosion and sedimentation control measures shall be incorporated into construction plans. These measures shall conform to the City of Folsom requirements and the County of Sacramento Erosion and Sedimentation Control Standards and Specifications—current edition and as directed by the Community Development Department.</td>
<td>G, I</td>
<td>CD (E)</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>The proposed development will add new impervious area to the site; therefore, stormwater quality treatment shall be provided. The City requires developers to utilize the Guidance Manual for On-Site Stormwater Quality Treatment Control Measures (January 2000) (“On-Site Manual”) in selecting and designing source control and post-construction facilities to treat runoff from the project.</td>
<td>G, I</td>
<td>CD (E)</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Prior to issuance of grading permits, the owner/applicant shall submit detailed drainage plans for evaluation by the City. Approved plans shall be implemented prior to project occupancy. The drainage plans shall include measures to minimize the total amount of additional surface runoff and to limit the flows released to off-site receiving waters to existing pre-development levels in accordance with the requirements of the City of Folsom Public Works Department.</td>
<td>G, I</td>
<td>CD (E), PW</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Prior to issuance of grading permits, the owner/applicant shall submit erosion control plans and other monitoring programs for the construction and operational phases of the proposed project for review by the City. The plan shall include Best Management Practices (BMP) to minimize and control the level of pollutants in stormwater runoff, and in runoff released to off-site receiving waters. Specific techniques may be based on geotechnical reports or the Erosion and Sediment Control Handbook of the California Department of Conservation, and shall comply with current City standards.</td>
<td>G, I</td>
<td>CD (E), PW</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Prior to issuance of grading permits, the owner/applicant shall obtain coverage under the State Water Resources Control Board General Permit for Discharges of Storm Water Associated with Construction Activity (Order 2009-0009-DWQ), including preparation and submittal of a project-specific Storm Water Pollution Prevention Plan (SWPPP) at the time the Notice of Intent (NOI) is filed. The project applicant shall also prepare and submit any other necessary erosion and sediment control and engineering plans and specifications for pollution prevention and control to the City of Folsom.</td>
<td>G, I</td>
<td>CD (E), PW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENVIRONMENTAL AND WATER RESOURCE REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>The water system shall be protected with USC Certified and approved RPPA and RPDA devices.</td>
<td>I</td>
<td>EWR</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>All on-site water and sewer systems shall be privately owned and maintained.</td>
<td>I</td>
<td>EWR</td>
<td></td>
</tr>
</tbody>
</table>
LANDSCAPE/TREE PRESERVATION REQUIREMENTS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33.</td>
<td>A Sewer Manhole or cleanout shall be placed at the property line/Right of Way line to distinguish private vs public ownership.</td>
<td>I</td>
</tr>
<tr>
<td>34.</td>
<td>All proposed sewer within the Right of Way shall be 8-inch SDR-26 sewer pipe.</td>
<td>I</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>35.</td>
<td>The owner/applicant shall be responsible for on-site landscape maintenance throughout the life of the project to the satisfaction of the Community Development Department. Vegetation or planting shall not be less than that depicted on the final landscape plan, unless tree removal is approved by the Community Development Department because the spacing between trees will be too close on center as they mature. No decorative turf or sod shall be permitted to the satisfaction of the Community Development Department.</td>
<td>B, OG</td>
</tr>
</tbody>
</table>
| 36. | Final landscape plans and specifications shall be prepared by a registered landscape architect and approved by the City prior to the approval of the first building permit. Said plans shall include all on-site landscape specifications and details including a tree planting exhibit demonstrating sufficient diversity and appropriate species selection to the satisfaction of the Community Development Department. The tree exhibit shall include all street trees, accent trees, parking lot shading trees, and mitigation trees proposed within the development. Said plans shall comply with all State and local rules, regulations, Governor’s declarations and restrictions pertaining to water conservation and outdoor landscaping.

Landscaping of the parking area shall meet shade requirements as outlined in the Folsom Municipal Code Chapter 17.57. The landscape plans shall comply and implement water efficient requirements as adopted by the State of California (Assembly Bill 1881) (State Model Water Efficient Landscape Ordinance) until such time the City of Folsom adopts its own Water Efficient Landscape Ordinance at which time the owner/applicant shall comply with any new ordinance. Shade and ornamental trees shall be maintained according to the most current American National Standards for Tree Care Operations (ANSI A-300) by qualified tree care professionals. Tree topping for height reduction, view protection, light clearance or any other purpose shall not be allowed. Specialty-style pruning, such as pollarding, shall be specified within the approved landscape plans and shall be implemented during a 5-year establishment and training period. The owner/applicant shall comply with city-wide landscape rules or regulations on water usage. The owner/applicant shall comply with any state or local rules and regulations relating to landscape water usage and landscaping requirements necessitated to mitigate for drought conditions on all landscaping in the Folsom Corporate Center project. | I | CD(P)(E) |
37. A Tree Permit Application containing an Application Form, Tree Protection and Mitigation Plan, and Arborist Report shall be submitted to the City of Folsom by the owner/applicant for issuance of a Tree Work Permit and Tree Removal Permit prior to commencement of any grading or site improvement activities. The tree protection and mitigation plan shall be prepared in collaboration with a qualified arborist and shall be subject to review and approval by the City. The tree protection and mitigation plan shall contain the contact information of the project arborist and shall be included in all associated plan sets for the project.

Removal of any protected tree shall be mitigated by planting replacement trees and/or payment of “In-Lieu” fees on a diameter inch basis in accordance with FMC, Section 12.16.150. The proposed method of mitigation shall be subject to review and approval by the City.

Prior to starting construction, oak trees to be preserved shall be fenced with high visibility fencing consistent with the city-approved tree protection and mitigation plan. Parking of vehicles, equipment, or storage of materials is prohibited within the Tree Protection Zone of Protected Trees at all times. Signs shall be posted on exclusion fencing stating that the enclosed trees are to be preserved. Signs shall state the penalty for damage to, or removal of, the protected tree.

The owner/applicant shall retain the services of a project arborist for the duration of the development project to monitor the health of oak trees to be preserved and carry out the City-approved tree protection plan. All regulated activity conducted within the Critical Root Zone of protected trees, as that term is defined in Folsom Municipal Code (FMC) 12.16.020, shall be performed under the direct supervision of the project arborist. A copy of the executed contract for these arboricultural services shall be submitted to the City prior to the issuance of any tree or grading permits.

Certification letters by the project arborist attesting compliance with the tree protection and mitigation plan and tree permit conditions shall be submitted to the City at the following stages of the project:

- Following completion of grading, prior to issuance of Building Permits.
- At the time of final inspection, prior to Certificate of Occupancy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>I, G, B, O</th>
<th>CD(P)(E)</th>
</tr>
</thead>
</table>
The owner/applicant shall plant 35 Mitigation Oak Trees on the project site in the locations as shown on the Preliminary Landscape Plans. The final number, location, and type of Mitigation Oak Trees shall be subject to review and approval by the Community Development Department. The owner/applicant shall pay in-lieu fees for any outstanding required Oak Tree Mitigation that is not satisfied through planting of Mitigation Oak Trees.

<table>
<thead>
<tr>
<th>CULTURAL RESOURCE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.</td>
</tr>
<tr>
<td>39.</td>
</tr>
</tbody>
</table>
| 40. | In the event of the accidental discovery or recognition of any human remains, CEQA Guidelines § 15064.5; Health and Safety Code § 7050.5; Public Resources Code § 5097.94 and § 5097.98 must be followed. If during the course of project development there is accidental discovery or recognition of any human remains, the following steps shall be taken:

There shall be no further excavation or disturbance within a 100-foot radius of the potentially human remains until the County Coroner is contacted to determine if the remains are Native American and if an investigation of the cause of death is required. If the coroner determines the remains to be Native American, the coroner shall contact the Native American Heritage Commission (NAHC) within 24 hours, and the NAHC shall identify the person or persons it believes to be the “most likely descendant” (MLD) of the deceased Native American. The MLD may make recommendations to the landowner or the person responsible for the excavation work within 48 hours, for means of treating or disposing of, with appropriate dignity, the human remains and any associated grave goods as provided in PRC Section 5097.98.

Where the following conditions occur, the landowner or his authorized representative shall rebury the Native American human remains and associated grave goods with appropriate dignity either in accordance with the recommendations of the most likely descendant or on the project site in a location not subject to further subsurface disturbance:

- The NAHC is unable to identify a most likely descendant or the most likely descendant failed to make a recommendation within 48 hours after being notified by the commission.
- The descendant identified fails to make a recommendation.
- The landowner or his authorized representative rejects the recommendation of the descendant, and mediation by the NAHC fails to provide measures acceptable to the landowner. | G, I, B | CD (P)(E) |
BIOLOGICAL RESOURCE REQUIREMENTS

| 41. | Nesting Birds: Mitigation Measure BIO-2: If project (construction) ground-disturbing or vegetation clearing and grubbing activities commence during the avian breeding season (February 1 through August 31), a qualified biologist shall conduct a pre-construction nesting bird survey no more than 14 days prior to initiation of project activities and again immediately prior to construction. The survey area shall include suitable raptor nesting habitat within 500-feet of the project boundary (inaccessible areas outside of the project site can be surveyed from the site or from public roads using binoculars or spotting scopes). Preconstruction surveys are not required in areas where project activities have been continuous since prior to February 1, as determined by a qualified biologist. Areas that have been inactive for more than 14 days during the avian breeding season must be re-surveyed prior to resumption of project activities. If no active nests are identified, no further mitigation is required. If active nests are identified, the following measure is required:

- A suitable buffer (e.g., typically 300-500-feet for raptors; and 50-100-feet for passerines) shall be established by a qualified biologist around active nests and no construction activities within the buffer shall be allowed until a qualified biologist has determined that the nest is no longer active (i.e., the nestlings have fledged and are no longer reliant on the nest, or the nest has failed). Encroachment into the buffer may occur at the discretion of a qualified biologist. Any encroachment into the buffer shall be monitored by a qualified biologist to determine whether nesting birds are being impacted.

- With implementation of the above mitigation measures, potential impacts to special-status species and nesting birds would be less than significant and no additional mitigation measures would be required. | G, I | CD (E)(P) |
| 42. | **Burrowing Owl**
Mitigation Measure BIO-1: Prior to the commencement of construction activities (which includes clearing, grubbing, or grading) a survey for burrowing owl shall be conducted by a qualified biologist. The survey shall occur within 30 days of the start of construction activities. Surveys shall be conducted in accordance with the following:

- A survey for active burrows and burrowing owls shall be conducted by walking through suitable habitat over the entire project site and in areas within 150-meters (~500-feet) of the project impact zone where accessible.

- Pedestrian survey transects shall be spaced to allow 100 percent visual coverage of the ground surface. The distance between transect center lines shall be no more than 30-meters (~100-feet) and shall be reduced to account for differences in terrain, vegetation density, and ground surface visibility. Surveyor(s) shall maintain a minimum distance of 50-meters (~160-feet) from any owls or occupied burrows. It is important to minimize disturbance near occupied burrows during all seasons.

- If no occupied burrows or burrowing owls are found in the survey area, a letter report documenting survey methods and findings shall be prepared and no further mitigation is necessary.

- If occupied burrows or burrowing owls are found, then a complete burrowing owl survey is required. This consists of a minimum of four site visits conducted on four separate days, which must also be consistent with the Survey Method, Weather Conditions, and Time of Day sections of Appendix D of the California Fish and Wildlife “Staff Report on Burrowing Owl Mitigation” (March 2012). A survey report shall be prepared that is consistent with the Survey Report section of Appendix D of the California Fish and Wildlife “Staff Report on Burrowing Owl Mitigation” (March 2012).

- If occupied burrows or burrowing owls are found, the applicant shall contact the City and consult with CDFW prior to construction and will be required to submit a Burrowing Owl Mitigation Plan (subject to the approval of the City and in consultation with California Fish and Wildlife). This plan must document all proposed measures, including avoidance, minimization, exclusion, relocation, or other measures, and include a plan to monitor mitigation success. The CDFW “Staff Report on Burrowing Owl Mitigation” (March 2012) shall be used. | G, I | CD (E)(P) |
<table>
<thead>
<tr>
<th>Control of fugitive dust is required by District Rule 403 and enforced by SMAQMD staff. The owner/applicant shall implement the following measures as identified by the SMAQMD:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Water all exposed surfaces two times daily. Exposed surfaces include, but are not limited to soil piles, graded areas, unpaved parking areas, staging areas, and access roads.</td>
</tr>
<tr>
<td>• Cover or maintain at least two feet of free board space on haul trucks transporting soil, sand, or other loose material on the site. Any haul trucks that would be traveling along freeways or major roadways should be covered.</td>
</tr>
<tr>
<td>• Use wet power vacuum street sweepers to remove any visible trackout mud or dirt onto adjacent public roads at least once a day. Use of dry power sweeping is prohibited.</td>
</tr>
<tr>
<td>• Limit vehicle speeds on unpaved roads to 15 miles per hour (mph).</td>
</tr>
<tr>
<td>• All roadways, driveways, sidewalks, parking lots to be paved should be completed as soon as possible. In addition, building pads should be laid as soon as possible after grading unless seeding or soil binders are used.</td>
</tr>
<tr>
<td>• Minimize idling time either by shutting equipment off when not in use or reducing the time of idling to 5 minutes [required by California Code of Regulations, Title 13, sections 2449(d)(3) and 2485]. Provide clear signage that posts this requirement for workers at the entrances to the site.</td>
</tr>
<tr>
<td>• Maintain all construction equipment in proper working condition according to manufacturer’s specifications. The equipment must be checked by a certified mechanic and determine to be running in proper condition before it is operated.</td>
</tr>
<tr>
<td>44.</td>
</tr>
<tr>
<td>45.</td>
</tr>
</tbody>
</table>

GREENHOUSE GAS REQUIREMENTS

46.	✓	In accordance with the City General Plan GHG Reduction Measure T-3, the project shall provide a minimum of five percent more bicycle parking than required in the City’s Municipal Code Section 17.57.090 (for a total of 54 bicycle parking spaces).	B	CD (P)(B)
47.	✓	In accordance with the City General Plan GHG Reduction Measure T-6, the project shall use high-performance diesel (also known as Diesel-HPR or Reg-9000/RHD) for all diesel-powered equipment utilized in construction of the project.	B	CD (P)(B)
48.	✓	In accordance with the City General Plan GHG Reduction Measure T-8, the project shall provide electric vehicle capable parking spaces in ten percent of the total parking spaces on the project site (for a total of 49 EV Capable charging spaces).	B	CD (P)(B)
49.	✓	In accordance with the City General Plan GHG Reduction Measure SW-1, the project shall divert to recycle or salvage a minimum 65 of nonhazardous construction and demolition waste generated at the project site in accordance with Appendix A4 (Residential) of the as outlined in the California Green Building Standards Code (2019 CALGreen).	B	CD (P)(B)
50.	✓	In accordance with the City General Plan GHG Reduction Measure W-1, the project shall comply with all applicable indoor and outdoor water efficiency and conservation measures required under 2019 CALGreen Tier 1, as outlined in the California Green Building Standards Code.	B	CD (P)(B)
Based on the recommendations of the Transportation Impact Study dated February 2022 (Attachment 21), the following condition of approval shall be implemented to the satisfaction of the Community Development Department and the Public Works Department:

- The owner/applicant shall modify Prairie City Road/ Iron Point Road signal timing plan by shifting 1 second from the eastbound through movement to the westbound left turn movement, reduce the vehicle extension setting from adding five to six additional seconds to the green phase for through movements to adding four seconds to the green phase for through movements for each vehicle passing the detector after the minimum green phase length has been exceeded. This mitigation measure shall be implemented by the City through the reimbursement agreement with the owner/applicant to cover any City costs. The implementation of this mitigation measure shall occur prior to issuance of the first building permit.

<p>| 51. | ✓ | Based on the recommendations of the Transportation Impact Study dated February 2022 (Attachment 21), the following condition of approval shall be implemented to the satisfaction of the Community Development Department and the Public Works Department: | CD (P)(E), PW | I |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>52.</td>
<td>To further ensure safe travel within the project site, the following measures shall be implemented to the satisfaction of the Community Development Department:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A “stop” sign and appropriate pavement markings shall be installed at the internal approach to the private ring road at the two primary project driveways.</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>• The vehicle entry gates at the two primary project driveway locations shall open inward, away from the private ring road or retract sideways. In addition, the design of the vehicle entry gates and the vehicle entry gate area shall conform to all requirements established by the City of Folsom for gated multi-family residential developments.</td>
<td>CD (P)(E)</td>
</tr>
<tr>
<td></td>
<td>• If vehicles are observed backing up into the private ring road at either of the two gated primary project entries, City staff will evaluate and require appropriate measures to alleviate the traffic congestion including but not limited to requiring the two project entry gates to remain open during the AM (7:00 a.m. to 9:00 a.m.) and PM (4:00 p.m. to 6:00 p.m.) peak hours on weekdays.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Residents of the Folsom Corporate Center Apartments project shall be issued remote transmitters to allow them to open the entry gates without needing to stop to enter a code in the keypad at either entrance location.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The owner/applicant shall provide at least one pedestrian connection from Lot 1 to the southern property boundary to allow for a connection to the future Class I bicycle trail expected to be located within the 50-foot-wide landscape easement between the project site and U.S. Highway 50.</td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>A minimum of 462 on-site parking spaces shall be provided for the project.</td>
<td>I, O</td>
</tr>
<tr>
<td>54.</td>
<td>A minimum of 51 on-site bicycle parking spaces shall be provided for the project in the two clubhouse buildings and at locations that are close proximity to the primary building entrances.</td>
<td>I, O</td>
</tr>
<tr>
<td>55.</td>
<td>Compliance with Noise Control Ordinance and General Plan Noise Element shall be required. Hours of construction operation shall be limited from 7:00 a.m. to 6:00 p.m. on weekdays and 8:00 a.m. to 5:00 p.m. on Saturdays. No construction is permitted on Sundays or holidays. Construction equipment shall be muffled and shrouded to minimize noise levels.</td>
<td>G, I, B</td>
</tr>
</tbody>
</table>
Construction activities shall be required to comply with the following and be noted accordingly on construction contracts:

1. **Construction hours/Scheduling:** The following are required to limit construction activities to the portion of the day when occupancy of the adjacent sensitive receptors are at the lowest:

 a. Construction activities for all phases of construction, including servicing of construction equipment shall only be permitted during the hours of 7:00 a.m. and 6:00 p.m. Monday through Friday and between 8:00 a.m. to 5:00 p.m. on Saturdays. Construction is prohibited on Sundays and on all holidays.

 b. Delivery of materials or equipment to the site and truck traffic coming to and from the site is restricted to the same construction hours specified above.

2. **Construction Equipment Mufflers and Maintenance:** All construction equipment powered by internal combustion engines shall be properly muffled and maintained.

3. **Idling Prohibitions:** All equipment and vehicles shall be turned off when not in use. Unnecessary idling of internal combustion engines is prohibited.

4. **Equipment Location and Shielding:** All stationary noise-generating construction equipment, such as air compressors, shall be located as far as practical from the adjacent homes. Acoustically shield such equipment when it must be located near adjacent residences.

5. **Quiet Equipment Selection:** Select quiet equipment, particularly air compressors, whenever possible. Motorized equipment shall be outfitted with proper mufflers in good working order.

6. **Staging and Equipment Storage:** The equipment storage location shall be sited as far as possible from nearby sensitive receptors.
57. Application

For habitable areas (both living rooms and bedrooms) with a direct line-of-sight to U.S. Highway 50 for Lot 1 and Iron Point Road for Lot 6, the following measures shall be incorporated in the design of the project to reduce interior noise levels to 45 CNEL or less:

- Lot 1 (Buildings 1 and 2) and Lot 6 (Building 2) – Minimum exterior wall requirement of STC 46.
- Lot 1 (Buildings 1 and 2) and Lot 6 (Building 2) – Minimum window and glass sliding door requirement of STC 35.
- Lot 1 (Building 7) and Lot 6 (Building 5) – Minimum window and glass sliding door requirement of STC 28.
- The building design shall include a mechanical ventilation system that meets the criteria of the International Building Code (Chapter 12, §1203.3 of the 2013 California Building Code) to ensure that windows would be able to remain permanently closed.

ARCHITECTURE/SITE DESIGN REQUIREMENTS

| 58. | The final location, design, materials, and colors of the trash/recycling enclosures be subject to review and approval by the Community Development Department. | I, B | CD (P)(E) |
| 59. | The final location, height, design, materials, and colors for the proposed retaining walls and fencing shall be subject to review and approval by the Community Development Department. | I, B | CD (P)(E) |
The project shall comply with the following architecture and design requirements:

1. This approval is for 11 three-story apartment buildings and two clubhouse buildings associated with the Folsom Corporate Center Apartments project. The applicant shall submit building plans that comply with this approval and the attached building elevations and color renderings dated November 16, 2021.

2. The design, materials, and colors of the proposed Folsom Corporate Center apartment and clubhouse buildings shall be consistent with the submitted building elevations, color renderings, materials samples, and color scheme to the satisfaction of the Community Development Department.

3. Brick pavers or another type of colored masonry material (ADA compliant) shall be used to designate pedestrian crosswalks on the project site, in addition to where pedestrian paths cross drive aisles, and shall be incorporated as a design feature at the two primary driveway entrances for Lot 1 and Lot 6 to the satisfaction of the Community Development Department.

4. Roof-mounted mechanical equipment, including satellite dish antennas, shall not extend above the height of the parapet walls. Ground-mounted mechanical equipment shall be shielded by landscaping or trellis type features.

5. Utility equipment such as transformers, electric and gas meters, electrical panels, and junction boxes shall be screened by walls and or landscaping.

GRADING REQUIREMENT

61. Prior to the approval of the final facilities design and the initiation of construction activities, the applicant shall submit an erosion control plan to the City for review and approval. The plan shall identify protective measures to be taken during excavation, temporary stockpiling, any reuse or disposal, and revegetation. Specific techniques may be based upon geotechnical reports, the Erosion and Sediment Control Handbook of the State of California Department of Conservation, and shall comply with all updated City standards.

SIGN REQUIREMENT

62. The owner/applicant shall obtain a sign permit prior to installation of the three monument signs.
OTHER AGENCY REQUIREMENT

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>63.</td>
<td>The owner/applicant shall obtain all required State and Federal permits and provide evidence that said permits have been obtained, or that the permit is not required, subject to staff review and approval of any grading or improvement plan.</td>
<td>G, I</td>
<td>CD (P)(E)</td>
</tr>
</tbody>
</table>

FIRE DEPARTMENT REQUIREMENTS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>64.</td>
<td>The building shall have illuminated addresses visible from the street or drive fronting the property. Size and location of address identification shall be reviewed and approved by the Fire Marshal.</td>
<td>I</td>
<td>FD</td>
</tr>
<tr>
<td>65.</td>
<td>Prior to the issuance of any improvement plans or building permits, the Community Development and Fire Departments shall review and approve all detailed design plans for accessibility of emergency fire equipment, fire hydrant flow location, and other construction features.</td>
<td>I, B</td>
<td>FD</td>
</tr>
<tr>
<td>66.</td>
<td>All fire protection devices shall be designed to be located on site: fire hydrants, fire department connections, post indicator valves, etc. Off-site devices cannot be used to serve the building. A water model analysis that proves the minimum fire flow will be required before any permits are issued. The fire sprinkler riser location shall be inside a Fire Control Room (5’ X 7’ minimum) with a full-sized 3’-0” door. This room can be a shared with other building utilities. The room shall only be accessible from the exterior.</td>
<td>I, B</td>
<td>FD</td>
</tr>
<tr>
<td>67.</td>
<td>All-weather emergency access roads and fire hydrants (tested and flushed) shall be provided before combustible material or vertical construction is allowed on site. All-weather access is defined as 6” of compacted AB from May 1 to September 30 and 2”AC over 6” AB from October 1 to April 30.</td>
<td>I, B</td>
<td>FD</td>
</tr>
</tbody>
</table>

POLICE/SECURITY REQUIREMENT

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 68.| The owner/applicant shall consult with the Police Department in order to incorporate all reasonable crime prevention measures. The following security/safety measures shall be required:
• A security guard shall be on-duty at all times at the site or a six-foot security fence shall be constructed around the perimeter of construction areas. (This requirement shall be included on the approved construction drawings).
• Security measures for the safety of all construction equipment and unit appliances shall be employed.
• Landscaping shall not cover exterior doors or windows, block line-of-sight at intersections or screen overhead lighting. | G, I, B | PD |
The proposed project shall comply with all State and local rules, regulations, Governor’s Declarations, and restrictions including but not limited to: Proclamation of a State of Emergency due to drought conditions issued by the Governor of California on October 19, 2021 relative to water usage and conservation, requirements relative to water usage and conservation established by the State Water Resources Control Board, and water usage and conservation requirements established within the Folsom Municipal Code, (Section 13.26 Water Conservation), or amended from time to time.

<table>
<thead>
<tr>
<th>RESPONSIBLE DEPARTMENT</th>
<th>WHEN REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD (P)</td>
<td>I</td>
</tr>
<tr>
<td>CD (E)</td>
<td>M</td>
</tr>
<tr>
<td>CD (B)</td>
<td>B</td>
</tr>
<tr>
<td>CD (F)</td>
<td>O</td>
</tr>
<tr>
<td>PW</td>
<td>DC</td>
</tr>
<tr>
<td>PR</td>
<td>OG</td>
</tr>
<tr>
<td>PD</td>
<td></td>
</tr>
</tbody>
</table>
Attachment 5

Vicinity Map
Attachment 6

General Plan Amendment Exhibits
Dated November 16, 2021
Attachment 7

Rezone Exhibits
Dated November 16, 2021
Attachment 8

Overall Site Plan, dated November 16, 2021
Attachment 9

Individual Site Plans and Details
Dated February 8, 2022
Attachment 10

Preliminary Utility Plans
Dated November 16, 2021
Attachment 11

Preliminary Grading and Drainage Plans
Dated November 16, 2021
Attachment 12

Preliminary Landscape Plans and Details
Dated November 16, 2021
Attachment 13

Preliminary Access and Circulation Plan
Dated November 16, 2021
Attachment 14

Preliminary Lighting Plan and Details
Dated November 16, 2021
Attachment 15

Building Elevations, Floor Plans, and Details
Dated November 16, 2021
Attachment 16

Color Renderings and Perspectives
Dated November 16, 2021
Attachment 17

Color and Materials Board
Dated November 16, 2021
Attachment 18

Signage Details
Dated November 16, 2021
Attachment 19

Building and Parking Summary
Dated February 8, 2022
Attachment 25

Folsom Corporate Center Apartments Booklet (Separate Bound Document)
Attachment 20

Site Photographs
Attachment 21

Transportation Impact Study
Dated February, 2022
Attachment 22

Initial Study, Mitigated Negative Declaration, and Mitigation Monitoring and Reporting Program
Dated March, 2022
Attachment 24

Folsom Corporate Center
Planned Development Guidelines
Attachment 23

SMAQMD ISMND Response Letter
Dated March 24, 2022
Attachment 5

Vicinity Map
Attachment 6

General Plan Amendment Exhibits
Dated November 16, 2021
RESULTANT PARCEL 1A
APN: 072-3120-026
CERTIFICATE OF COMPLIANCE
BOOK 20210514 PAGE 819
EXISTING GENERAL PLAN:
IND

HIGHWAY 50

EXISTING GENERAL PLAN DESIGNATION: INDUSTRIAL
ACREAGE: 7.24± AC

OWNER/APPLICANT:
FCD 50, LLC
EVEY CHAMBERS PARK DRIVE, SUITE 101
SACRAMENTO, CA 95833
ATTN: ROB COLE
PHONE: (916)273-4030
EMAIL: ROB.COLE@BSBDEVELOPMENTS.COM

ENGINEER:
RSC ENGINEERING, INC.
1430 ROCKY RIDGE DRIVE, SUITE 150
ROSEVILLE, CA 95678
ATTN: TITANY WILSON
PHONE: (916)791-2884

PROPOSED GENERAL PLAN:
MHD

ACREAGE: 7.34± AC

HIGHWAY 50

RESULTANT PARCEL 1A
APN: 072-3120-026
CERTIFICATE OF COMPLIANCE
BOOK 20210514 PAGE 819
PROPOSED GENERAL PLAN:
MHD

HIGHWAY 50

EXISTING GENERAL PLAN AMENDMENT GPA
IRON POINT ROAD APARTMENTS - LOT 1
FOLSOM, CA.

NOVEMBER 16, 2021 | MR260320.00
EXISTING GENERAL PLAN: IND

EXISTING GENERAL PLAN DESIGNATION: INDUSTRIAL
ACREAGE: 4.681 AC

OWNER/APPLICANT:
FDC 50, LLC
2404 NATOMAS PARK DRIVE, SUITE 101
SACRAMENTO, CA 95833
APN: 072-3120-009
PHONE: (916)273-4020
WWW.FDC50.COM

ENGINEER:
RSC ENGINEERING, INC.
1420 ROSE GOLD DRIVE, SUITE 150
ROSEVILLE, CA 95661
APN: 072-3120-009
PHONE: (916)788-2884

PROPOSED GENERAL PLAN: MHD

PROPOSED GENERAL PLAN DESIGNATION: MULTI-FAMILY HIGH DENSITY
ACREAGE: 4.681 AC

GENERAL PLAN AMENDMENT GPA
IRON POINT ROAD APARTMENTS - LOT 6
FOLSOM, CA.

NOVEMBER 16, 2021 | MR200320.00
RESULTANT PARCEL A
072-3120-023
CERTIFICATE OF COMPLIANCE
BOOK 20150701 PAGE 929
EXISTING ZONING: BP (PD)

EXISTING ZONING: BUSINESS AND PROFESSIONAL DISTRICT
(PLANNED DEVELOPMENT)
ACREAGE: 4.68 AC

OWNER/APPLICANT:
RSC DG, LLC
2484 SACRAMENTO PARK DRIVE, SUITE 101
SACRAMENTO, CA 95833
ATTN: ROB COLE
PHONE: (916) 375-4232
ROB@RSCDG.COM

ENGINEER:
RSC ENGINEERING INC.
1420 RIDGE ROAD, SUITE 150
ROSEVILLE, CA 95661
ATTN: TIFFANY WILSON
PHONE: (916) 288-2884

Grupe
COLE PARTNERS DEVELOPMENT COMPANY

IRON POINT ROAD APARTMENTS - LOT 6
FOLSOM, CA.

NOVEMBER 16, 2021 | MR200320.00

PARCEL C
APN:
072-3120-011
(N.A.P.)

PARCEL C
APN:
072-3120-023
(N.A.P.)

OPEN SPACE
APN:
072-3120-001
(N.A.P.)

OPEN SPACE
APN:
072-3120-009
(N.A.P.)

REZONE EXHIBIT
RZ

IRON POINT ROAD APARTMENTS - LOT 6
FOLSOM, CA.

NOVEMBER 16, 2021 | MR200320.00
Attachment 8

Overall Site Plan, dated November 16, 2021
Attachment 9

Individual Site Plans and Details
Dated February 8, 2022
PROJECT AMENITIES
- Dog Park
- Outlook Point

BUILDING A1 (32-PLEX)
- Total 32 units
- 3 Stories
- 17 Garages

BUILDING B2 (21-PLEX)
- Total 21 units
- 3 Stories
- 9 Garages

BUILDING B3 (21-PLEX)
- Total 21 units
- 3 Stories
- 11 Garages

CLUBHOUSE
- Leasing Office
- 3 story, +/- 6,782 sf
- Pool

BUILDING B1 (16-PLEX)
- Total 16 units
- 3 Stories
- 9 Garages

PROJECT SUMMARY
GROSS AREA: +/- 7.18 ac
TOTAL UNITS: 153 units
DENSITY: 21.31 du/ac
OVERALL PARKING: 304 spaces (1.99 ratio)

10% OF PARKING = 30 EV CAPABLE PARKING SPACES TO BE PROVIDED

CONCEPTUAL SITE PLAN - 7.18 ac SITE
IRON POINT ROAD APARTMENTS
FOLSOM, CA.

NOTE: Proposed property location, boundary lines, and shape of the parcel shown in this study are for graphic reference only and may be subject to change pending on owner's final surveying map.
PROJECT SUMMARY

GROSS AREA
+/- 4.13 ac

TOTAL UNITS
100 units

DENSITY
24.21 du/ac

PARKING
187 spaces (1.87 ratio)
- Garage 46 spaces
- Covered Parking 54 spaces
- Surface Parking 87 spaces

10% OF PARKING = 19 EV CAPABLE PARKING SPACES TO BE PROVIDED

BUILDING B2 (21-PLEX)
- Total 21 units
- Front-loaded
- 3 Stories

BUILDING B4 (26-PLEX)
- Total 26 units
- Front-loaded
- 3 Stories

CLUBHOUSE
- Leasing Office
- +/- 3,098 sf
- Pool
- Outdoor Fire Pit

DOG PARK

CONCEPTUAL SITE PLAN - 4.13 ac SITE

CONCEPTUAL SITE PLAN - 100 UNITS

IRON POINT ROAD APARTMENTS
Attachment 10

Preliminary Utility Plans
Dated November 16, 2021
PRELIMINARY UTILITY PLAN
IRON POINT ROAD APARTMENTS - LOT 1
FOLSOM, CA.
Attachment 11

Preliminary Grading and Drainage Plans
Dated November 16, 2021
PRERELIMINARY GRADING SECTIONS GR2

IRON POINT ROAD APARTMENTS - LOT 1
FOLSOM, CA.

NOVEMBER 16, 2021 | MR200320.00
Attachment 12

Preliminary Landscape Plans and Details
Dated November 16, 2021
General Planting Notes

1. All planting areas shall be irrigated with an automatic irrigation system that will be consistent with the State's Water Efficient Landscape Ordinance.

2. All shrub and groundcover areas shall receive a 2" layer of bark/chip mulch or dressing.

3. Ground covers shall not be installed within a 4' radius of any trees.

Design Statement

The landscape will be designed to meet the County Development Standards and Design Guidelines. The planting and irrigation will meet the State Requirements of buildings (low water use plant material and irrigated with a high efficiency system) and the overall design will have been coordinated with the Civil Engineer for movement and size. Trees around the perimeter of the property will meet the height criteria.

Plants

- **Shrubs**
 - **California Boxwood (Buxus californica)**
 - **Forsythia (Forsythia x intermedia)**
 - **Japanese Boxwood (Buxus japonica)**
 - **Privet (Ligustrum ovalifolium)**
 - **Privet (Ligustrum ovalifolium) - Shrub**
 - **Evergreen (Ilex crenata)**
 - **Holly (Ilex opaca)**
 - **Holly (Ilex opaca) - Shrub**
 - **Holm Oak (Quercus ilex)**
 - **Holm Oak (Quercus ilex) - Shrub**

- **Trees**
 - **White Oak (Quercus alba)**
 - **White Oak (Quercus alba) - Shrub**
 - **Cedar (Juniperus virginiana)**
 - **Cedar (Juniperus virginiana) - Shrub**
 - **Elm (Ulmus americana)**
 - **Elm (Ulmus americana) - Shrub**
 - **Jagged Leaf (Cotoneaster salicifolius)**
 - **Jagged Leaf (Cotoneaster salicifolius) - Shrub**

Screening

- **Tall Fescue (Festuca arundinacea)**

Mulch

- **Chippings**

Plant Materials

- **Bark Mulch**

Irrigation

- **Low Water Use**

Vegetation

- **Native Vegetation**

Vegetation Height

- **6' or More**

Vegetation Width

- **10' or More**

Vegetation Density

- **High Density**

Vegetation Use

- **Screening**

Vegetation Location

- **Surrounding Properties**

Vegetation Size

- **Large Size**

Vegetation Type

- **Shrub**

Vegetation Water Use

- **Low Water Use**
Preliminary Parking Shade Plan

IRON POINT ROAD APARTMENTS
FOLSOM, CA

March 16, 2022 | MR200320.00

119
Preliminary Landscape Plan

IRON POINT ROAD APARTMENTS - LOT 6
FOLSOM, CA.

PARKING LOT INSERT
PARKING LOT INSERT
PARKING LOT INSERT

DESIGN STATEMENT

The landscape will be designed to meet the county development standards and design guidelines. The planting areas will be designed to screen and visually mask the units. The landscape will be designed to provide a visually appealing landscape and include plantings that will enhance the aesthetic value of the property.

GENERAL PLANTING NOTES

1. All planting areas shall be irrigated with an automatic irrigation system that will be compliant with the state's water-efficient landscape ordinance.

2. All plantings shall be coordinated with the civil engineer for placement and grading.

3. Ground covers shall not be installed within a radius of a tree trunk.

ENERGY TREATMENT INTENT

PLANTING AT THE ENTRANCES WILL BE HIGHLIGHTED & DEFINED BY SEASONAL FLOWERS & LANDSCAPE. THE USE OF COLORFUL PLANT MATERIALS WILL BE LOW TO MAINTAIN SIGHT LINES.

SCREENING/PATTERN

PROPERTY BOARDS WILL BE SELECTED TO SCREEN THE UNITS AND PROVIDE PRIVACY FOR THE PROPERTIES WHILE ALLOWING FOR VIEWS.

PLANT SCHEDULE LOT 6

<table>
<thead>
<tr>
<th>TALL PLANTING</th>
<th>REGULAR PLANTING</th>
<th>LOW PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>SIZE</td>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLANT SCHEDULE LOT 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TALL PLANTING</td>
</tr>
<tr>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

PLANT SCHEDULE LOT 6

<table>
<thead>
<tr>
<th>TALL PLANTING</th>
<th>REGULAR PLANTING</th>
<th>LOW PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>SIZE</td>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PLANT SCHEDULE LOT 6

<table>
<thead>
<tr>
<th>TALL PLANTING</th>
<th>REGULAR PLANTING</th>
<th>LOW PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>SIZE</td>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PLANT SCHEDULE LOT 6

<table>
<thead>
<tr>
<th>TALL PLANTING</th>
<th>REGULAR PLANTING</th>
<th>LOW PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>SIZE</td>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PLANT SCHEDULE LOT 6

<table>
<thead>
<tr>
<th>TALL PLANTING</th>
<th>REGULAR PLANTING</th>
<th>LOW PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>SIZE</td>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PLANT SCHEDULE LOT 6

<table>
<thead>
<tr>
<th>TALL PLANTING</th>
<th>REGULAR PLANTING</th>
<th>LOW PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>SIZE</td>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PLANT SCHEDULE LOT 6

<table>
<thead>
<tr>
<th>TALL PLANTING</th>
<th>REGULAR PLANTING</th>
<th>LOW PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>SIZE</td>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PLANT SCHEDULE LOT 6

<table>
<thead>
<tr>
<th>TALL PLANTING</th>
<th>REGULAR PLANTING</th>
<th>LOW PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>SIZE</td>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Attachment 13

Preliminary Access and Circulation Plan
Dated November 16, 2021
Attachment 14

Preliminary Lighting Plan and Details
Dated November 16, 2021
RADEAN BOLLARD

With an award-winning design, the RADEAN Bollard truly captivates the imagination allowing nearly unlimited opportunities for the perfect Desing-Inspired Landscape. While creating a cohesive family look, the bollard ties the space together with specific design elements to match the look of the RADEAN Post Top and Arm Mount. With both symmetric and asymmetric distributions, you can put the light where you need it.
RADEAN Bollard
LED Site Luminaire

Introduction

The Radean LED Bollard is an award-winning, energy-saving, long-life solution designed to perform the way a bollard should. The Radean LED Bollard's rugged construction, durable finish and long-lasting LEDs will provide years of maintenance-free service.

Specifications

<table>
<thead>
<tr>
<th>Diameter:</th>
<th>D = 8.25" (20.96 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height:</td>
<td>H = 41.5" Standard (105.41 cm)</td>
</tr>
<tr>
<td>Weight:</td>
<td>20 lbs (9.07 Kg)</td>
</tr>
</tbody>
</table>

Ordering Information

EXAMPLE: RADB LED P4 30K SYM MVOLT BTS BCCDNATXD DBLXD

<table>
<thead>
<tr>
<th>Series</th>
<th>Performance Package</th>
<th>Color temperature</th>
<th>Distribution</th>
<th>Voltage</th>
<th>Control options</th>
<th>Bollard top mounted</th>
<th>Tall Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADB LED</td>
<td>P1</td>
<td>27K</td>
<td>SYM</td>
<td>MVOLT</td>
<td>Shipped Installed</td>
<td>PE</td>
<td>Slim Top</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>30K</td>
<td>SYM</td>
<td>120</td>
<td>Photoelectric cell, button type</td>
<td>10</td>
<td>Slim top, painted to match shaft</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>35K</td>
<td>208</td>
<td>DMC</td>
<td>0-10V dimming driver (no control)</td>
<td>BTTBLSBKX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>40K</td>
<td>240</td>
<td>E7WH</td>
<td>Emergency battery backups (limited to CA Title 20 MATDRS 6.7)</td>
<td>BTTBLSBKX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>50K</td>
<td>347</td>
<td>FAO</td>
<td>Field adjustable output</td>
<td>BTTBLSBKX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>480</td>
<td>PIR</td>
<td>Motion sensor Bi-level</td>
<td>BTTBLSBKX</td>
<td></td>
</tr>
</tbody>
</table>

Bollard crown options

<table>
<thead>
<tr>
<th>Deep Crown</th>
<th>Flat Crown</th>
<th>Other options</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCC</td>
<td>BCF</td>
<td>H24 (24")</td>
<td>DBBBDK</td>
</tr>
<tr>
<td>BCCWHD</td>
<td>BCFDUBLKD</td>
<td>H30 (30")</td>
<td>DBBDJKD</td>
</tr>
<tr>
<td>BCCBLKD</td>
<td>BCFDUBLKD</td>
<td>H36 (36")</td>
<td>DBBDHIKD</td>
</tr>
<tr>
<td>BCCBTDX</td>
<td>BCFDUBLKD</td>
<td>L/AB - Without anchor bolts</td>
<td>DBBDHJKD</td>
</tr>
<tr>
<td>BCCDDBX</td>
<td>BCFDUBLKD</td>
<td>L/AB - Without anchor bolts</td>
<td>DBBDHJKD</td>
</tr>
<tr>
<td>BCCDNAXD</td>
<td>BCFDUBLKD</td>
<td>L/AB - Without anchor bolts</td>
<td>DBBDHJKD</td>
</tr>
<tr>
<td>BCCDWDH</td>
<td>BCFDUBLKD</td>
<td>L/AB - Without anchor bolts</td>
<td>DBBDHJKD</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>RADAAB U</th>
<th>Anchor bolts (4)</th>
<th>NKTRADB BORT (FINISH) U</th>
<th>Base cover with bolt caps</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADABCDOKB U</td>
<td>Replacement anchor bolt covers (specify finish) (4)</td>
<td>NKTRADBHDK (FINISH) U</td>
<td>Emergency inst styles</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. PS only available in SYM distribution.
2. SYM has only two illuminated quadrants driven at higher drive currents to generate similar output as the SYM-4 quadrant product.
3. PIR not available with 208V or 347V.
4. PE only available with ASY.
5. PE, PIR and FAO not available with BTS, E7WH and PIR only available in full height, Not available with H24, H30 or H36.
6. PIR not available with E7WH.
7. Architectural and custom colors available (additional leadtimes and cost may apply).
8. 42" Height is standard, H24, H30 and H36 have longer leadtime.
TECHNICAL INFORMATION

Motion Sensor
RIDDLE Post Top and Art Mount and
Delinea are all available with motion
sensors that are concealed within the
hardware to deliver energy savings.

Networked Controls
The RIDDLE Post Top and Art Mount
systems can also be ordered in your
chosen network. Connect your systems
can be connected to your building's
network for improved lighting
management.

Warmer Color Palette
The most popular color temperature
available is the different color temperature
including the warmest 2700K and 3000K,
which is required for outdoor lighting,
additionally or 3500K to match the neutral
4000K or 5000K for those requiring
a brighter appearance.

Short Lead Times
The RIDDLE line is produced in the
United States and comes with a short lead
time. You can expect to have your product
in stock and shipped in as few as 4 weeks.

DLC® and DLC PREMIUM®
All of the RIDDLE American versions are
rated as DLC® qualified and DLC®
Premium. Qualified products can yield energy
savings up to 15% per light fixture.

* DLC® is a registered certification mark of the Designated Compromised Consumer (DCC) Quality and the product is DLC® qualified and DLC® Premium. The all colors of
this product may be DLC® qualified and DLC® Premium. Please check the DLC® Qualified Product List for
additional information. ** DLC® is a registered certification mark of the Designated Consumer (DCC) Quality
and the product is DLC® qualified and DLC® Premium.
Attachment 15

Building Elevations, Floor Plans, and Details
Dated November 16, 2021
Partial Site Plan

Floor Area Calculation:
Main Clubhouse
First Floor: 2,598 s.f.
Second Floor: 2,377 s.f.
Third Floor: 1,807 s.f.
Total: 6,782 s.f.
Covered Patio: 412 s.f.
Balcony: 409 s.f.
Roof Deck: 1,395 s.f.

Lot 1 CLUBHOUSE
IRON POINT ROAD APARTMENTS
FOLSOM, CA.
Rear Elevation

Front Elevation

Left Elevation

Right Elevation

Perspective

Perspective

LOT 6 / CLUBHOUSE/LEASING OFFICE

CONCEPTUAL EXTERIOR ELEVATION

IRON POINT ROAD APARTMENTS

FOLSOM, CA

Scale: 1/8" = 1'-0"

GRIPE

COLE PARTNERS DEVELOPMENT COMPANY

IRON POINT ROAD APARTMENTS

FOLSOM, CA

NOVEMBER 16, 2021

MR200320.00

BSB DESIGN

architects
e}
Lot 6 CLUBHOUSE

Clubhouse: 3,098 s.f. +/-
Covered Patio: 502 s.f. +/-
Total Gross: 3,627 s.f. +/-
The drawings presented are illustrative of character and design only, and are subject to change based upon final design considerations. (In applicable states, structural and MEP, interior finishes, and plan/plot plan changes are to be submitted in accordance with all applicable building codes and regulations.)

IRON POINT ROAD APARTMENTS
FOLSOM, CA.

NOVEMBER 16, 2021 MR200320.00
CONCEPTUAL EXTERIOR ELEVATION
IRON POINT ROAD APARTMENTS
FOLSOM, CA.
CONCEPTUAL EXTERIOR ELEVATION
IRON POINT ROAD APARTMENTS
FOLSOM, CA.

NOVEMBER 16, 2021 MR200320.00
Overall Square Footage:
1st FLOOR: 12,644 SF
2nd FLOOR: 13,284 SF
3rd FLOOR: 12,821 SF
TOTAL: 38,749

Unit Mix:
S1: 2 units
A1: 16 units
B1: 4 units
B1-Alt.: 6 units
C1: 4 units
Total: 32 units

BUILDING A1 - 32PLEX
IRON POINT ROAD APARTMENTS
FOLSOM, CA.

Scale: 3/32" = 1'-0"
ROOF PLAN

BUILDING A1 - 32PLEX
IRON POINT ROAD APARTMENTS
FOLSOM, CA.

Scale: 3032" = 1'-0"

NOVEMBER 16, 2021 MR200320.00
BUILDING A1 - 32PLEX
IRON POINT ROAD APARTMENTS
FOLSOM, CA.

SECTION A-A
SECTION B-B
SECTION C-C
BUILDING B1 - 16PLEX
IRON POINT ROAD APARTMENTS
FOLSOM, CA.

Overall Square Footage
1st FLOOR: 6,241 SF
2nd FLOOR: 6,307 SF
3rd FLOOR: 6,589 SF
TOTAL: 19,137 SF

Unit Mix:
S1: 2 units
A1: 6 units
B1: 4 units
B1-Alt: 4 units
Total: 16 units

Scale: 3/32" = 1'-0"
The drawings presented are illustrative of interior and design views only and are subject to change based upon final design considerations (i.e. applicable codes, structural, and M/E design requirements and plans). Final plans, changes, etc. © 2021 BSB Design, Inc.

SECTION A-A

SECTION B-B

SECTION C-C

BUILDING B1 - 16PLEX

IRON POINT ROAD APARTMENTS

COLE PARTNERS DEVELOPMENT COMPANY

Grupe

BSB DESIGN

NOVEMBER 16, 2021 MR200320.00

Scale: 1/8" = 1'-0"
Front Elevation

Perspective

Left Elevation

BUILDING - B2 / 21PLEX

CONCEPTUAL EXTERIOR ELEVATION
IRON POINT ROAD APARTMENTS
FOLSOM, CA.

Grupe

Scale: 1/8" = 1'-0"
Overall Square Footage:
1st FLOOR: 8,518 SF
2nd FLOOR: 8,518 SF
3rd FLOOR: 8,210 SF
TOTAL: 25,260

Unit Mix:
A1: 11 units
B1: 2 units
B1-Alt.: 6 units
C1: 2 units
Total: 21 units

BUILDING B2 - 21PLEX IRON POINT ROAD APARTMENTS
FOLSOM, CA.
Front Elevation

Perspective

Left Elevation

BUILDING - B3 / 21PLEX

CONCEPTUAL EXTERIOR ELEVATION
IRON POINT ROAD APARTMENTS
FOLSOM, CA

Scale: 1/8" = 1'-0"

Grupe

COLE PARTNERS DEVELOPMENT COMPANY

NOVEMBER 16, 2021 MR200320.00
FIRST FLOOR
BUILDING B3 - 21PLEX IRON POINT ROAD APARTMENTS
FOLSOM, CA.

Overall Square Footage
1st FLOOR: 7,711 SF
2nd FLOOR: 8,148 SF
3rd FLOOR: 7,840 SF
TOTAL: 23,699

Unit Mix:
S1: 2 units
A1: 11 units
B1: 4 units
B1-Alt.: 4 units
Total: 21 units

The drawings, specifications and data in this plan are for the exclusive use of Cole Partners Development Company and are not to be reproduced in whole or in part without written consent. The plans are subject to change due to conditions on site, design, engineering, and the requirements of applicable codes, and are not to be used by others without written consent of Cole Partners Development Company.

NOVEMBER 16, 2021 MR200320.00

COLE PARTNERS DEVELOPMENT COMPANY
The drawings presented are illustrative of phases and design intent only, and are subject to change based upon final design considerations.

Building B3 - 21PLEX
IRON POINT ROAD APARTMENTS
FOLSOM, CA.

Scale: 1/8" = 1'-0"

November 16, 2021 MR200320 00
Front Elevation

Perspective

BUILDING - B4 / 26PLEX

CONCEPTUAL EXTERIOR ELEVATION
IRON POINT ROAD APARTMENTS
FOLSOM, CA

NOVEMBER 16, 2021
The drawings presented are illustrative of concept and design only, and are subject to change based on final design considerations (i.e. applicable codes, structural, and MEP design requirements, and site, code, plot changes, etc.) © 2019 BSB Design, Inc.
UNIT C1
3 BEDROOM + 2 BATH
GROSS: 1,476 SQ. FT.
NET: 1,414 SQ. FT.
PATIO/BALCONY: 62 SQ. FT.

UNIT-B1 ALT.
2 BEDROOM + 2 BATH
GROSS: 1,055 SQ. FT.
NET: 990 SQ. FT.
PATIO/BALCONY: 65 SQ. FT.
TRASH ENCLOSURE

IRON POINT ROAD APARTMENTS
FOLSOM, CA.

Grupe

Cole Partners Development Company

The drawings presented are schematic and design intent only, and are subject to change based on local code considerations, applicable codes, structural, and site design requirements. See plan for floor plan changes. Oct 15, 2019 BSB Design, Inc.

NOVEMBER 16, 2021 MR200320.00 BSBDESIGN.COM
Attachment 16

Color Renderings and Perspectives
Dated November 16, 2021
LOT 6 / AERIAL VIEWS

IRON POINT ROAD APARTMENTS
FOLSOM, CA.

NOVEMBER 16, 2021 MR200320.00
Attachment 17

Color and Materials Board
Dated November 16, 2021
Attachment 18

Signage Details
Dated November 16, 2021
NORTH VIEW OF LOT 6 FROM IRON POINT RD. CORNER

WEST VIEW OF LOT 6 FROM IRON POINT RD. CORNER

STREET ELEVATION ALONG IRON POINT RD

FRONT ELEVATION

IRON POINT APARTMENT HOMES

IRON POINT ROAD / MONUMENT SIGNAGE

IRON POINT ROAD APARTMENTS
FOLSOM, CA.

NOVEMBER 16, 2021 MR200320.00

The drawings presented are illustrative of concept and design only. They are subject to change based on final design considerations.
IRON POINT ROAD APARTMENTS
FOLSOM, CA.

LOT 1 / MONUMENT SIGNAGE

COLE PARTNERS DEVELOPMENT COMPANY

Grupe

BSB DESIGN

NOVEMBER 10, 2021 MR200320.00

* The cover page presented herein reflects the work product of Cole Partners Development Company and the cover page has been updated to reflect the approved design. For further changes, please refer to the approved design documents.
Attachment 19

Building and Parking Summary
Dated February 8, 2022
SITE INFORMATION
TOTAL SITE AREA 7.18 AC
TOTAL UNITS 153 UNITS
DENSITY 21.31 D.U./AC

BUILDING SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>B1</th>
<th>B2</th>
<th>B5</th>
<th>C1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILDING A1 - 3 story (15 plus one under leased)</td>
<td>16</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Percentage per each unit type</td>
<td>50%</td>
<td>19%</td>
<td>19%</td>
<td>9%</td>
<td>12%</td>
<td>100%</td>
</tr>
<tr>
<td>BUILDING B1 - 3 story (15 plus one under leased)</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Percentage per each unit type</td>
<td>38%</td>
<td>18%</td>
<td>18%</td>
<td>12%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>BUILDING B2 - 3 story (18 plus)</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Percentage per each unit type</td>
<td>52%</td>
<td>10%</td>
<td>6%</td>
<td>10%</td>
<td>6%</td>
<td>100%</td>
</tr>
<tr>
<td>BUILDING B3 - 3 story (11 plus one under leased)</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Percentage per each unit type</td>
<td>52%</td>
<td>19%</td>
<td>19%</td>
<td>10%</td>
<td>6%</td>
<td>100%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>45</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>22</td>
<td>94</td>
</tr>
<tr>
<td>Percentage per each unit type</td>
<td>30.3%</td>
<td>12.8%</td>
<td>12.8%</td>
<td>7.3%</td>
<td>12.8%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Clubhouse: +/-6,782 sf.
Total Overall Parking: 304 spaces
Overall Parking Ratio: 1.99 spaces/unit
Total Parking Outside Powerlines: 189 spaces
Integrated Garage: 74 spaces
Covered Surface Parking: 79 spaces
Uncovered Surface Parking: 151 spaces
Uncovered Surface Parking Outside Power Lines: 36
Uncovered Surface Parking Under Power Lines: 115
Guest Parking (Included): 9 spaces
PARKING STATISTICS

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>No. of Units</th>
<th>Ratio Required per City Guidelines</th>
<th>Stalls Required per City Guidelines</th>
<th>Total Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bedroom</td>
<td>77</td>
<td>1.50</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>2 Bedroom</td>
<td>58</td>
<td>1.75</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3 Bedroom</td>
<td>10</td>
<td>3.00</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Studio</td>
<td>8</td>
<td>1.50</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Visitors</td>
<td>153</td>
<td>3.50</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>

BICYCLE PARKING STATISTICS

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>No. of Units</th>
<th>City Requirement per 5 units</th>
<th>Req's spaces</th>
<th>In Bike Storage</th>
<th>Additional external spaces</th>
<th>Total Provided Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>158</td>
<td>30.4</td>
<td>30</td>
<td>33</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

Parking Ratio: 0.22

Per CalGreen, the most restrictive application should be used. CalGreen Non-Residential requirement is 5% of total parking so we have applied the City of Folsom bike requirement.

UNIT MIX

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit Type</th>
<th>Unit Loc.</th>
<th>Net Unit Area*</th>
<th>Balcony</th>
<th>Gross Unit Area**</th>
<th>Quantity</th>
<th>%</th>
<th>Total Net Unit</th>
<th>Total Gross Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1 br/1 ba</td>
<td>Interior</td>
<td>687</td>
<td>64</td>
<td>752</td>
<td>77</td>
<td>50%</td>
<td>52,899</td>
<td>57,904</td>
</tr>
<tr>
<td>B1</td>
<td>2 br/2 ba</td>
<td>Corner</td>
<td>1,037</td>
<td>64</td>
<td>1,121</td>
<td>24</td>
<td>13%</td>
<td>33,340</td>
<td>33,426</td>
</tr>
<tr>
<td>B1-Alt</td>
<td>2 br/2 ba</td>
<td>Interior</td>
<td>990</td>
<td>64</td>
<td>1,054</td>
<td>36</td>
<td>25%</td>
<td>37,620</td>
<td>40,052.00</td>
</tr>
<tr>
<td>S1</td>
<td>Studio</td>
<td>Interior/Corner</td>
<td>560</td>
<td>-</td>
<td>558</td>
<td>8</td>
<td>5%</td>
<td>4,512</td>
<td>4,460</td>
</tr>
<tr>
<td>C1</td>
<td>3 br/2 ba</td>
<td>Corner</td>
<td>1,472</td>
<td>62</td>
<td>1,834</td>
<td>12</td>
<td>7%</td>
<td>14,120</td>
<td>14,120</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>585</td>
<td></td>
<td></td>
<td>100%</td>
<td></td>
<td>130,391</td>
<td>266,836.00</td>
</tr>
</tbody>
</table>

Average unit size: 851.58 sq ft / 922.88 sq ft
COLE PARTNERS - FOLSOM APARTMENTS - LOT 6

11/3/2021

SITE INFORMATION

<table>
<thead>
<tr>
<th>TOTAL SITE AREA</th>
<th>4.13 AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL UNITS</td>
<td>100 UNITS</td>
</tr>
<tr>
<td>DENSITY</td>
<td>24.21 du/ac</td>
</tr>
</tbody>
</table>

BUILDING SUMMARY

<table>
<thead>
<tr>
<th>BUILDING B2 - 3 story (21 plex)</th>
<th>A1</th>
<th>B1</th>
<th>B1 alto</th>
<th>S1</th>
<th>C1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Percentage per each unit type</td>
<td>52%</td>
<td>19%</td>
<td>19%</td>
<td>10%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUILDING B3 - 3 story (22 plex Stair back loaded)</th>
<th>A1</th>
<th>B1</th>
<th>B1 alto</th>
<th>S1</th>
<th>C1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>16</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>Percentage per each unit type</td>
<td>50%</td>
<td>13%</td>
<td>19%</td>
<td>6%</td>
<td>13%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUILDING B4 - 3 story (26 plex Stair back loaded)</th>
<th>A1</th>
<th>B1</th>
<th>B1 alto</th>
<th>S1</th>
<th>C1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>11</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Percentage per each unit type</td>
<td>42%</td>
<td>15%</td>
<td>35%</td>
<td>8%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL</th>
<th># of Bldgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2</td>
</tr>
<tr>
<td>B1</td>
<td>22</td>
</tr>
<tr>
<td>B1 alto</td>
<td>8</td>
</tr>
<tr>
<td>S1</td>
<td>8</td>
</tr>
<tr>
<td>C1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
</tr>
</tbody>
</table>

A1	16
B1	4
B1 alto	6
S1	2
C1	4
Total	32

A1	13
B1	4
B1 alto	9
S1	2
C1	0
Total	25

A1	45
B1	36
B1 alto	23
S1	8
C1	4
Total	100

<table>
<thead>
<tr>
<th>Percentage per each unit type</th>
<th>49.00%</th>
<th>16.00%</th>
<th>23.00%</th>
<th>8.00%</th>
<th>4.00%</th>
<th>100%</th>
</tr>
</thead>
</table>

Clubhouse: +/-3,098 sf.
Total Overall Parking: 188 spaces
Overall Parking Ratio: 1.88 spaces/unit
Integrated Garage: 46 spaces

Covered Surface Parking: 54 spaces
Uncovered Surface Parking: 88 spaces

LOT 6 PROJECT SUMMARY - 100 UNITS

IRON POINT ROAD APARTMENTS
FOLSOM, CA.

FEBRUARY 8, 2022 | MR200320
PARKING STATISTICS

10% of parking – 12 EV capable parking spaces to be provided per CalGreen Mandatory Requirements

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>No. of Units</th>
<th>Ratio Required per City Guidelines</th>
<th>Stalls Required per City Guidelines</th>
<th>Total Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bedroom</td>
<td>49</td>
<td>1.50</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>2 Bedroom</td>
<td>39</td>
<td>1.75</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>3 Bedroom</td>
<td>4</td>
<td>2.00</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Studio</td>
<td>8</td>
<td>1.50</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Visitors</td>
<td>100</td>
<td>1 per 5 units</td>
<td>20</td>
<td>187</td>
</tr>
<tr>
<td>Total Required Spaces</td>
<td>182</td>
<td></td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Parking Ratio</td>
<td>1.62</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BICYCLE PARKING STATISTICS

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>No. of Units</th>
<th>Requirement 1 per 5 units</th>
<th>Req's spaces</th>
<th>In Bike Storage</th>
<th>Additional external spaces</th>
<th>Total Provided Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Required Spaces</td>
<td>100</td>
<td>20</td>
<td>20</td>
<td>2</td>
<td>22</td>
<td>0.22</td>
</tr>
<tr>
<td>Parking Ratio</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Per CalGreen, the most restrictive application should be used. CalGreen Non-Residential requirement is 5% of total parking as we have applied the City of Folsom bike requirement.

UNIT MIX

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit Type</th>
<th>Unit Loc.</th>
<th>Net Unit Area*</th>
<th>Balcony</th>
<th>Gross Unit Area**</th>
<th>Quantity</th>
<th>%</th>
<th>Total (Net Unit)</th>
<th>Total (Gross Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1 br/1 ba</td>
<td>Interior</td>
<td>687</td>
<td>64</td>
<td>753</td>
<td>49</td>
<td>49%</td>
<td>33,553</td>
<td>36,848</td>
</tr>
<tr>
<td>B1</td>
<td>2 br/2 ba</td>
<td>Corner</td>
<td>1,057</td>
<td>64</td>
<td>1,121</td>
<td>16</td>
<td>16%</td>
<td>16,912</td>
<td>17,936</td>
</tr>
<tr>
<td>B1-Al</td>
<td>2 br/3 ba</td>
<td>Interior</td>
<td>990</td>
<td>64</td>
<td>1,054</td>
<td>23</td>
<td>23%</td>
<td>22,770</td>
<td>24,242</td>
</tr>
<tr>
<td>S1</td>
<td>Studio</td>
<td>Interior/Corner</td>
<td>564</td>
<td>558</td>
<td>1,474</td>
<td>8</td>
<td>8%</td>
<td>4,512</td>
<td>4,460</td>
</tr>
<tr>
<td>C1</td>
<td>3 br/3 ba</td>
<td>Corner</td>
<td>1,412</td>
<td>62</td>
<td>1,474</td>
<td>4</td>
<td>4%</td>
<td>5,648</td>
<td>5,896</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100%</td>
<td>83,505</td>
<td>89,382</td>
</tr>
</tbody>
</table>

Average unit size 835.05 893.82
Attachment 20

Site Photographs
Attachment 21

Transportation Impact Study
Dated February, 2022
Folsom Corporate Center Apartments Transportation Impact Study

Folsom, California

Prepared for:
City of Folsom
Helix Environmental, Inc., and
FCC 50, LLC

Prepared By

T. KEAR
TRANSPORTATION PLANNING & MANAGEMENT, INC.

Contact: Tom Kear PhD, PE,
tkear@tkearinc.com,
(916) 340-4811
www.tkearinc.com

February 2022
REVISION HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 7, 2021</td>
<td>Draft TIS</td>
<td>Updated parking per revised site plan, clarified</td>
</tr>
<tr>
<td>Feb 3, 2022</td>
<td>Final Report</td>
<td>gate queue storage. Clarified “mitigation” vs “abatement”.</td>
</tr>
</tbody>
</table>

EXECUTIVE SUMMARY

This Transportation Impact Study identifies impacts of the proposed Folsom Corporate Center Apartments project (the Project) on the motorized and unmotorized transportation systems in Folsom, California. This study has been prepared for the City of Folsom, Helix Environmental Inc., and FCC 50, LLC.

Project Description

Figure ES-1 provides a Project vicinity map. The Project consists of 253 apartment units on two separate parcels within the Folsom Corporate Center. The two Project parcels are Accessors Parcel number 072-3120-001 (referred to as “Lot 1”) and 072-3120-023 (referred to as “Lot 6”). The Project parcels are generally located east of Oak Avenue Parkway, south of Iron Point Road, and north of U.S. Highway 50. One portion of the Project will be located on a 4.13-acre parcel situated in front of the Safe Credit Union Building and adjacent to Iron Point Road (Lot 6). The second portion of the project will be located on a 7.18-acre parcel situated directly behind the Kaiser Permanente office building (Lot 1). The Project offers walkable access to employment opportunities within the Folsom Corporate Center and is less than a mile from excellent shopping and entertainment options at the Palladio. 491 parking spaces are proposed for an overall parking ratio of 1.94 spaces per dwelling unit. A preliminary site plan is provided in Figure ES-2, with driveway queue storage detail shown in Figure ES-3 and Figure ES-4.

Analysis Scope

The analysis considers CEQA Vehicle Miles of Travel impacts and the traffic operations at intersections in Folsom that could potentially be impacted by Project traffic. Study intersections and segments are shown in Figure ES-5 and listed in Table ES-1 and Table ES-2. This Transportation Impact Study considers six study scenarios:

- Existing 2021 without Project Condition;
- Existing 2021 with Project Condition;
- Existing Plus Approved Projects (EPAP) 2026 without Project Condition;
- EPAP 2026 with Project Condition;
- Cumulative 2035 without Project Condition; and
- Cumulative 2035 with Project Condition.
Figure ES-1. Iron Point Road Apartment Vicinity Map
Figure ES-2. Preliminary Site Plan (note that updated entry detail is provided in Figure ES-3 and Figure ES-4)
Folsom Corporate Center Apartments
Transportation Impact Study

Figure ES-3. Entry Gate Detail At For “Lot 1” (Western Portion Of Project) Showing Queue Storage At Entry Gate
Figure ES-4. Entry Gate Detail At For "Lot 6" (Eastern Portion Of Project) Showing Queue Storage At Entry Gate
Iron Point Road Apartments

Study Intersections & Road Segment Map

Figure ES-5. Project area roadways including study intersections and study road segments
Table E5-1. Study Intersections

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/US 50 eastbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>2. Prairie City Rd/US 50 westbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
</tr>
<tr>
<td>5. Iron Point Rd /Grover Rd</td>
<td>Signal</td>
</tr>
<tr>
<td>6. Iron Point Rd /Oak Avenue Pkwy</td>
<td>Signal</td>
</tr>
<tr>
<td>7. Iron Point Rd /West Kaiser access road</td>
<td>TWSC*</td>
</tr>
<tr>
<td>8. Iron Point Rd /Rowberry Way</td>
<td>Signal</td>
</tr>
<tr>
<td>9. Iron Point Rd /Safe Credit Union access</td>
<td>TWSC*</td>
</tr>
<tr>
<td>10. Iron Point Rd /Broadstone Pkwy</td>
<td>Signal</td>
</tr>
<tr>
<td>11. Iron Point Rd /East Bidwell St</td>
<td>Signal</td>
</tr>
<tr>
<td>12. East Bidwell St/US 50 westbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>13. East Bidwell St/US 50 eastbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSC*</td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSC*</td>
</tr>
<tr>
<td>16. Oak Avenue Pkwy/US 50 westbound ramps (2035 Only)</td>
<td>Signal</td>
</tr>
<tr>
<td>17. Oak Avenue Pkwy/US 50 eastbound ramps (2035 Only)</td>
<td>Signal</td>
</tr>
</tbody>
</table>

* Two Way Stop Control
Findings and Recommendations

The Project is anticipated to generate 1376 daily vehicle trips, 81 AM peak-hour vehicle trips, and 104 PM peak-hour vehicle trips. There are no anticipated Project related level-of-service deficiencies.

The Project is anticipated to have a less-than-significant impact on vehicle level-of-service, bike and pedestrian activity and facilities, transit operations and facilities, and VMT.

Parking supply at an overall ratio of 1.94 spaces per apartment exceeds the City requirements and is sufficient to meet the anticipated parking demand. Lot 1 has a parking ratio of 1.99 spaces per apartment and Lot 6 has a parking ratio of 1.87 spaces per apartment. All of which exceed the City requirement of 1.5 spaces per dwelling unit.

Storage for two or more vehicles is provided in front of entry gates, which is adequate to store the anticipated 95% gate queues.
As described in section 8.3 Queueing (page 74), Project related queuing deficiencies are anticipated on the westbound left-turn from Iron Point Rd to Prairie City Rd during the AM peak hour in under Existing 2021 with Project and EPAP 2026 with Project conditions (Deficiency 1 and Deficiency 2, respectively). To avoid confusion, General Plan deficiencies are labeled as “deficiencies” rather than (CEQA) “impacts”, and the related improvements are labeled as “abetment measures” rather than “mitigation measures”. This is done to emphasis that any level-of-service and/or queueing concerns are not considered to be impacts under CEQA.

Abatement 1 and Abatement 2 (also described in Section 8.3) are anticipated to reduce queues such that the Project has a less-than-significant effect on traffic operations. These two Abatement measures are identical. The project should be conditioned to coordinate with the City to implement Abatement 1 and 2, prior to issuance of the first building permit:

Abatement 1 and Abatement 2

(Prior to issuance of the First building permit, at applicants expense): “Modify Prairie City Rd/Iron Point Rd signal timing plan by shifting 1 second from the eastbound through movement to the westbound left turn movement, reduce the vehicle extension setting from adding five to six additional seconds to the green phase for through movements to adding four seconds to the green phase for through movements for each vehicle passing the detector after the minimum green phase length has been exceeded.”

Otherwise, the City’s standard approval conditions and fees are adequate.
4.1 Existing 2021 Condition ... 29
Data Sources ... 29
Existing Condition Intersection and Segment Level-of-Service 30
4.2 Assessment of Proposed Project .. 35
Trip Generation ... 35
Trip Distribution and Assignment .. 35
4.3 Existing 2021 with Project Conditions ... 42
5. EXISTING PLUS APPROVED PROJECTS (EPAP) 2026 CONDITION WITH AND WITHOUT PROJECT ... 47
5.1 EPAP 2026 Growth Increment ... 47
5.2 EPAP 2026 Conditions ... 47
5.3 EPAP 2026 with Project Condition .. 53
6. CUMULATIVE 2026 CONDITION WITH AND WITHOUT PROJECT ... 59
6.1 Cumulative 2035 Growth Increment .. 59
6.2 Cumulative 2035 Conditions .. 59
6.3 Cumulative 2035 with Project Condition ... 64
7. PROJECT IMPACTS AND MITIGATION ... 69
7.1 Level-of-Service Impacts ... 69
7.2 SB Vehicle Miles Traveled (VMT) ... 69
8. OTHER CONSIDERATIONS ... 73
8.1 Internal Circulation and Site Plan Review 73
Parking Requirements ... 73
Entry Gate Queues .. 73
Minimum Required Throat-Depth ... 74
Emergency Vehicle Access ... 74
Right-Turn Deceleration/Acceleration Lanes and Tapers for Driveways 74
8.2 Bicycle/Pedestrian/Transit Facilities .. 74
8.3 Queueing .. 74
Existing 2021 conditions with Project .. 74
EPAP 2026 Conditions with Project .. 75
9. FINDINGS AND RECOMMENDATIONS ... 77
List of Appendices
A. Traffic Counts and Signal Timing Sheets .. A-1
B. Level-of-Service and Signal Warrant Calculations B-1
C. Travel Demand Model and NCHRP 255 Calculations B-1

List of Tables
Table 1. US 50 Study Segment .. 10
Table 2. Study Intersections and Control .. 11
Table 3. Level-of-Service Criteria for Signalized Intersections 20
Table 4. Level-of-Service Criteria for Unsignalized Intersections 22
Table 5. Level-of-Service Criteria – Basic Freeway Segments 24
Table 6. Level-of-Service Criteria – Freeway Ramp Merge/Diverge Areas 24
Table 7. Level-of-Service Criteria - Freeway Weaving Areas 25
Table 8. Key Items and Sources for Geometry and Usage Data 29
Table 9. Existing 2021 Intersection Delay and Level-of-Service (LOS) 33
Table 10. Existing 2021 US 50 Segment Density and Level-of-Service (LOS) 34
Table 11. Project Trip Generation .. 35
Table 12. Existing 2021 Intersection Delay and Level-of-Service (LOS), with and without Project ... 45
Table 13. Existing 2021 US 50 Segment Density and Level-of-Service (LOS), with and without Project ... 46
Table 14. EPAP 2026 Intersection Delay and Level-of-Service 51
Table 15. EPAP 2026 US 50 Segment Density and Level-of-Service (LOS) 52
Table 16. EPAP 2026 Intersection Delay and Level-of-Service, with and without Project ... 56
Table 17. EPAP 2026 US 50 Segment Density and Level-of-Service (LOS), with and without Project ... 57
Table 18. Cumulative 2035 Intersection Delay and Level-of-Service 62
Table 19. Cumulative 2035 US 50 Segment Density and Level-of-Service (LOS) . 63
Table 20. Cumulative 2035 Intersection Delay and Level-of-Service, with and without Project ... 67
Table 21. Cumulative US 50 Segment Density and Level-of-Service (LOS), with and without Project ... 68
Table 22. Abatement 1 Supporting Data .. 75
Table 23. Abatement 2 Supporting Data .. 75

List of Figures
Figure 1. Vicinity Map .. 2
Figure 2. Preliminary Site Plan (Updates Entry Detail Is Provided In Figure 3 For Lot 1 On The
West And Figure 4 For Lot 6 On The East) ... 3
Figure 3. Entry Gate Detail At For “Lot 1” (Western Portion Of Project) Showing Queue Storage
At Entry Gate .. 4
Figure 4. Entry Gate Detail At For “Lot 6” (Eastern Portion Of Project) Showing Queue Storage
At Entry Gate .. 5
Figure 5. Project Area Roadways Including Study Intersections and Study Road Segments 8
Figure 6. Folsom Stage Lines Routes 10, 20 and 30.. 13
Figure 7. Folsom Bike Map ... 14
Figure 8. Two-Way Class I Bikeway (Source: Caltrans 2012 HDM Figure 1003.1A) 15
Figure 9. Sharrow .. 17
Figure 10. Class IV Bikeway ... 18
Figure 11. Existing Condition Turn Movements and Geometry ... 31
Figure 12. Project Trip Distribution for Existing 2021 and EPAP 2026 Conditions 36
Figure 13. Project Trip Assignment for Existing 2021 and EPAP 2026 Conditions 37
Figure 14. Project Trip Distribution for Cumulative 2035 Conditions 39
Figure 15. Project Trip Assignment for Cumulative 2035 Conditions 40
Figure 16. Existing 2021 with Project Condition Turning Movements and Lane Geometry.... 43
Figure 17. EPAP 2026 Condition Turn Movements and Geometry 49
Figure 18. EPAP 2026 with Project Turning Movements and Lane Geometry 54
Figure 19. Cumulative 2035 Condition Turn Movements and Geometry 60
Figure 20. Cumulative 2035 with Project Turning Movements and Lane Geometry 65
Figure 21. SACOG SB 743 Regional VMT Screening Map .. 71
1. INTRODUCTION
This transportation impact study identifies impacts of the proposed Folsom Corporate Center Apartments project (the Project) on the motorized and unmotorized transportation systems in Folsom, California. This study has been prepared for the City of Folsom, Helix Environmental Inc., and the applicant FFC 50, LLC.

1.1 Project Description
Figure 1 provides a project vicinity map. The applicant is requesting approval of a General Plan Amendment, Rezone, Planned Development Permit Modification, and Design Review for development of a 253-unit multi-family market rate apartment community on two separate parcels within the Folsom Corporate Center. The two Project parcels are Accessors Parcel number 072-3120-001 (referred to as “Lot 1”) and 072-3120-023 (referred to as “Lot 6”). The project parcels are generally located east of Oak Avenue Parkway, south of Iron Point Road, and north of U.S. Highway 50. One portion of the project will be located on a 4.13-acre parcel situated in front of the Safe Credit Union Building and adjacent to Iron Point Road (Lot 6). The second portion of the project will be located on a 7.18-acre parcel situated directly behind the Kaiser Permanente Office Building (Lot 1). The proposed apartment community is comprised of 12 three-story apartment buildings containing between 20 and 31 rental units. The applicant is requesting a General Plan amendment, Rezone, Planned Development Permit Modification, and Design Review.

The proposed apartments, which include a combination of one, two, and three bedroom units, range in size from 690 square feet to 1,325 square feet. In addition, the proposed Project includes two clubhouse buildings featuring indoor and outdoor amenities. Access to the two Project parcels is proposed to be provided by three existing driveways located along the south side of Iron Point Road. The proposed project includes 491 parking spaces including garage parking spaces, carport covered parking spaces, and uncovered parking spaces. Additional site improvements include drive aisles, curbs, gutters, sidewalks, internal walkways, underground utilities, retaining walls, site lighting, site landscaping, and monument signs.

A preliminary site plan is provided in Figure 2, with driveway detail in Figure 3 and Figure 4. Lot 1 will accommodate 153 dwelling units and 304 parking spaces. Lot 6 will accommodate 100 dwelling units and 187 parking spaces. Each portion of the development will be gated with full access driveways to Folsom Corporate Center’s private roadways. Two of three Folsom Corporate Center driveways onto Iron Point Road have restricted access (either limiting left turns out or limiting left turns both in and out) and are side street stop controlled. The Folsom Corporate Center driveway aligned with Rowberry Drive is a full access intersection with signal control. Under cumulative conditions, Rowberry Drive is assumed to be extended across US 50 to Alder Creek Parkway in Folsom Ranch.

1.2 Report Organization
The following sections are discussed after this Introduction: Setting and Study Area (key roadways and intersections, the regulatory setting, and analysis scenarios); Methodology (detailing the
Folsom Corporate Center Apartments
Transportation Impact Study
Folsom, California

analysis procedures); six analysis sections; and, the final sections summarizing project impacts, mitigations, triggers for those mitigations, and recommended conditions of approval.

Iron Point Road Apartments

Existing & EPAP Trip Distribution Map

![Map of Iron Point Road Apartments](image)

Figure 1. Vicinity Map
Figure 2. Preliminary Site Plan (Updates Entry Detail Is Provided In Figure 3 For Lot 1 On The West And Figure 4 For Lot 6 On The East)
Figure 3. Entry Gate Detail At For "Lot 1" (Western Portion Of Project) Showing Queue Storage At Entry Gate
Figure 4. Entry Gate Detail At For “Lot 6” (Eastern Portion Of Project) Showing Queue Storage At Entry Gate
(This page intentionally left blank)
2. SCENARIOS, SETTING AND STUDY AREA

The Transportation Impact Study area generally consists of the region along the portion of East Bidwell Street from Folsom Lake College to US 50, and along Cavitt Drive from Broadstone Parkway to Iron Point Road within the City of Folsom, California. Key roadways within the study area, and study intersections, are shown in Figure 5.

2.1 Study Scenarios

Four scenarios were identified for inclusion in this Transportation Impact Study through consultation with City of Folsom staff. The study determines the weekday AM peak-hour and PM peak-hour level-of-service at study intersections under the following scenarios:

- Existing 2021 without Project Condition;
- Existing 2021 with Project Condition;
- Existing Plus Approved Projects (EPAP) 2026 without Project Condition;
- EPAP 2026 with Project Condition;
- Cumulative 2035 without Project Condition; and
- Cumulative 2035 with Project Condition.

Existing 2021, and Existing 2021 with Project Condition

Analysis of the existing condition reflects the traffic volumes and roadway geometry at the time the study began. These two scenarios (with and without the Project) quantify performance measures, serve as a known reference point for those familiar with the study area, and identify project related impacts anticipated to occur if the project opened in 2021.

EPAP 2026 Condition, and EPAP 2026 with Project Condition

EPAP scenarios, with and without the Project, analyze conditions with the addition of traffic from approved and reasonably foreseeable projects that affect study intersections and segments. These scenarios are intended to reflect anticipated traffic approximately five years into the future, when the project could reasonably be anticipated to be constructed. This “phasing analysis” is intended to assist the City of Folsom in phasing of improvements at study intersections which may be necessary to accommodate traffic from all approved and anticipated tentative maps over the next five years.

Cumulative 2035 Condition, and Cumulative 2035 with Project Condition

Cumulative scenarios, with and without the Project, analyze anticipated conditions at the General Plan 2035 horizon year. These scenarios are intended to reflect anticipated traffic from Folsom Ranch, and shifts in traffic patterns anticipated after construction of two new interchanges and US 50 overcrossings.
Figure 5. Project Area Roadways Including Study Intersections and Study Road Segments
2.2 Project Area Roadways

Brief descriptions of the key roadways serving the Project site are provided below.

Iron Point Road is an east-west arterial roadway with a raised median that runs from Folsom Boulevard to the eastern city limit along the north side of US 50. Within the vicinity of the Project, Iron Point Road has six lanes, bike lanes, sidewalk, curb, and gutter. The posted speed limit is 45 mph. Turn pockets are provided at intersections.

Oak Avenue Parkway is a north-south arterial that extends from Willow Creek Drive to Iron Point Road. It is a four-lane urban arterial road between Willow Creek Drive and Blue Ravine Road. It is a six-lane urban arterial road between Blue Ravine Road and Riley Street. It is a four-lane urban arterial road between Riley Street and Iron Point Road. Oak Avenue Parkway will be extended across US 50 into Folsom Ranch and a new interchange will be constructed prior to the cumulative analysis scenarios.

Rowberry Drive is a north-south two-lane local road that runs northward from the Kaiser Permanente Folsom Medical Offices into neighborhoods to the north of Iron Point Road. A future extension of Rowberry across US 50 to Folsom Ranch is planned for the future.

Broadstone Parkway in the project vicinity is a four-lane east-west arterial, that wraps around the back of the Palladio shopping center from Iron Point Road to connect with Empire Ranch Road near the Sacramento-El Dorado county line. Broadstone Parkway has bike lanes, sidewalk, curb, and gutter. Turn pockets are provided at intersections.

East Bidwell Street runs through the City of Folsom from White Rock Road to Riley Street. East Bidwell Street becomes Scott Road south of US 50. Near the Project area, East Bidwell Street is a six-lane arterial roadway with bike lanes, sidewalk, curb, and gutter. Turn pockets are provided at intersections. The speed limit on East Bidwell Street north of US 50 is 45 mph.

Prairie City Road is a north-south arterial that extends from Blue Ravine Road to White Rock Road, north of Blue Ravine Road it is called Sibley Street. It is a five-lane urban arterial road between Blue Ravine Road and Iron Point Road. Prairie City Road is a six-lane urban arterial road between Iron Point Road and Highway 50. It is a two-lane rural road between Highway 50 and White Rock Road.
2.3 Study Intersections
There are twenty study segments on US 50 (Table 1) and seventeen study intersections (Table 2). The Oak Avenue Parkway interchange will be constructed by the cumulative analysis year, resulting in changes to some study US 50 segments.

Table 1. US 50 Study Segment

<table>
<thead>
<tr>
<th>US 50 Segment</th>
<th>Segment Type</th>
<th>Applicable Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>All</td>
</tr>
<tr>
<td>2. US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>3. US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>4. US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>All</td>
</tr>
<tr>
<td>5. US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td>2035</td>
</tr>
<tr>
<td>6. US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>2035</td>
</tr>
<tr>
<td>7. US 50 westbound Oak Avenue diagonal onramp</td>
<td>weave</td>
<td>2035</td>
</tr>
<tr>
<td>to Prairie City Rd offramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. US 50 westbound Prairie City offramp</td>
<td>Diverge</td>
<td>2021/2026</td>
</tr>
<tr>
<td>9. US 50 westbound Prairie City loop onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>10. US 50 westbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>11. US 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td>All</td>
</tr>
<tr>
<td>12. US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>13. US 50 eastbound Prairie City fly-over onramp</td>
<td>Merge</td>
<td>2021/2026</td>
</tr>
<tr>
<td>14. US 50 eastbound Prairie City fly-over</td>
<td>Weave</td>
<td>2035</td>
</tr>
<tr>
<td>onramp to Oak Ave offramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. US 50 eastbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>2035</td>
</tr>
<tr>
<td>16. US 50 eastbound Oak Avenue diagonal onramp</td>
<td>Merge</td>
<td>2035</td>
</tr>
<tr>
<td>17. US 50 eastbound Oak Ave to East Bidwell</td>
<td>Basic</td>
<td>All</td>
</tr>
<tr>
<td>18. US 50 eastbound East Bidwell offramp</td>
<td>Diverge</td>
<td>All</td>
</tr>
<tr>
<td>19. US 50 eastbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>20. US 50 eastbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2. Study Intersections and Control

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/US 50 eastbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>2. Prairie City Rd/US 50 westbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
</tr>
<tr>
<td>5. Iron Pt Road/Grover Rd</td>
<td>Signal</td>
</tr>
<tr>
<td>6. Iron Pt Road/Oak Avenue Pkwy</td>
<td>Signal</td>
</tr>
<tr>
<td>7. Iron Pt Road/West Kaiser access road</td>
<td>TWSC*</td>
</tr>
<tr>
<td>8. Iron Pt Road/Rowberry Way</td>
<td>Signal</td>
</tr>
<tr>
<td>9. Iron Pt Road/Safe Credit Union access</td>
<td>TWSC*</td>
</tr>
<tr>
<td>10. Iron Pt Road/Broadstone Pkwy</td>
<td>Signal</td>
</tr>
<tr>
<td>11. Iron Pt Road/East Bidwell St</td>
<td>Signal</td>
</tr>
<tr>
<td>12. East Bidwell St/US 50 westbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>13. East Bidwell St/US 50 eastbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSC*</td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSC*</td>
</tr>
<tr>
<td>16. Oak Avenue Pkwy/US 50 westbound ramps (2035 Only)</td>
<td>Signal</td>
</tr>
<tr>
<td>17. Oak Avenue Pkwy/US 50 eastbound ramps (2035 Only)</td>
<td>Signal</td>
</tr>
</tbody>
</table>

* Two Way Stop Control

2.4 Transit

City of Folsom’s public transportation includes bus and dial-a-ride service provided by the City through “Folsom Stage Lines” and light rail service provided by Sacramento Regional Transit (RT). El Dorado County Transit (EDC Transit) also provides limited bus connections to El Dorado County.

Folsom Stage Lines and Dial-A-Ride

The Folsom Stage Line buses run Monday through Friday. Since February 4, 2019 Folsom Stage Lines has been operated by Sacramento RT. There is no weekend service available. There are currently ten buses running on three routes. They are routes 10, 20 and 30 (Figure 6). Routes 10 and 20 intersect at Folsom Lake College. There is no charge to transfer from one Folsom Stage Line route to the other.

- Route 10 - Services Historic Folsom, E. Bidwell St., the Broadstone Market Place, Broadstone Plaza, Folsom Aquatics Center, Folsom Lake College, Intel, Kaiser Permanente, Folsom Premium Outlets, Mercy Hospital, Palladio Mall, and Century Theatres. It connects to light rail and with the RT bus service Line 24. Service with a one-hour headway starts at 5:25 AM with the last pickup at 7:25 PM.
- Route 20 - Services Empire Ranch Road, East Natoma Street, Vista del Lago High School, Folsom Lake College and transfers to Route 10. There are one morning bus and two afternoon buses on Route 20.
- Route 30 - Services Folsom State Prison, City Hall, and Woodmere Drive during peak hours (6 AM – 8:10 AM and 2:35 PM – 4:55 PM) with four AM peak-period buses and five PM peak-period buses.

Dial-A-Ride is a curb-to-curb transportation service that operates within the Folsom City limits. It provides transportation to residents who have a physical, developmental, or mental disability. Senior citizens who are 55 years of age or older also qualify for this program.

Sacramento RT
Sacramento Regional Transit (RT) light rail provides service via the Gold Line connecting the Historic Folsom, Glenn, and Iron Point light rail stations to downtown Sacramento and points in between. Service is provided from 5 AM to 7 PM on a 30-minute headway. There is also a connection to RT bus route 24 from Folsom Stage Lines route 10 at the Madison/Main stop. RT route 24 provides service to Sunrise Mall on a (roughly) hourly headway from 6 AM to 7 PM.

El Dorado County Transit
The EDC Transit route 50X (the 50 Express) operates every hour from 6 AM until 7 PM Monday through Friday, with service from Missouri Flat Transfer Center in El Dorado County to the Folsom Iron Point light rail station, Folsom Lake College, and back.
2.5 Bicycle Facilities

The City of Folsom is one of the most bike friendly settings in California, with an existing comprehensive bikeway system that is extensive and connects to a vast number of historical and recreational attractions. Existing and planned bicycle facilities within the project area are described in the 2007 Folsom Bikeway Master Plan\(^1\) which provide a framework for the design of a bikeway system that meets the California Street and Highway Code Section 890-894.2 - Bicycle Transportation Act and improves safety and convenience for all users. (Note that there is an updated bike plan under development as part of the Folsom Active Transportation Plan.) There are four types of bicycle facilities (Class 1, 2, 3, and 4) used in Folsom. Figure 7 provides a Folsom bike map. All road segments in the study area include Class 2 bike lanes. There are existing and planned Class 1 trails along Iron Point Road, as well as a class 1 trail connecting under US 50 paralleling the rail line located to the east of East Bidwell Street. The different classes of bicycle facilities are described after Figure 7.

\(^1\) Folsom (2007) Bikeway Master Plan,
www.folsom.ca.us/city_hall/depts/parks/parks_n_trails/trails/bikeway_master_plan.asp.
Figure 7. Folsom Bike Map
Class I Bikeway (Bike Trail)

Class I bikeways, unless adjacent to an adequate pedestrian facility, are for the exclusive use of bicycles and pedestrians, therefore any facility serving pedestrians must meet accessibility requirements. Note that sidewalks are not Class I bikeways because they are primarily intended to serve pedestrians, generally cannot meet the design standards for Class I bikeways, and do not minimize vehicle cross flows. Motor vehicles are prohibited from bike paths per the California Vehicle Code (CVC). These prohibitions can be reinforced with signs. Within the Project vicinity there are Class I trails along the east side of the American River/Lake Natoma, the east side of Folsom Boulevard, and connections between those two trails both north and south of the Project site.

Generally, bike paths should be used to serve corridors not served by streets and highways or where a wide right-of-way exists, permitting such facilities to be constructed away from the influence of parallel streets. Bike paths should offer opportunities not provided by the road system. They can either provide a recreational opportunity, or in some instances, can serve as direct high-speed commute routes if cross flow by motor vehicles and pedestrian conflicts can be minimized. The most common applications are along rivers, ocean fronts, canals, utility right of way, abandoned railroad right of way, within school campuses, or within and between parks. There may also be situations where such facilities can be provided as part of planned developments. Another common application of Class I facilities is to close gaps to bicycle travel caused by construction of freeways or because of the existence of natural barriers (rivers, mountains, etc.).
Class II Bikeway (Bike Lane)

Class II Bikeways are bike lanes generally striped along streets in corridors where there is significant bicycle demand, and where there are distinct needs that can be served by them. The purpose should be to improve conditions for bicyclists in the corridors. Bike lanes are intended to delineate the right-of-way assigned to bicyclists and motorists and to provide for more predictable movements by each. But a more important reason for constructing bike lanes is to better accommodate bicyclists through corridors where insufficient room exists for side-by-side sharing of existing streets by motorists and bicyclists. This can be accomplished by reducing the number of lanes, reducing lane width, or prohibiting or reconfiguring parking on given streets in order to delineate bike lanes. In addition, other things can be done on bike lane streets to improve the situation for bicyclists that might not be possible on all streets (e.g., improvements to the surface, augmented sweeping programs, special signal facilities, etc.). Generally, pavement markings alone will not measurably enhance bicycling.

If bicycle travel is to be provided by delineation, attention should be made to assure that high levels of service are provided with these lanes. It is important to meet bicyclist expectations and increase bicyclist perception of service quality where capacity analysis demonstrates service quality measures are improved, from the bicyclist’s point of view.

Class III Bikeway (Bike Route)

Bike routes are unstriped, shared facilities which serve either to:

- Provide continuity to other bicycle facilities (usually Class II bikeways); or
- Designate preferred routes through high demand corridors.

As with bike lanes, designation of bike routes should indicate to bicyclists that there are advantages to using these routes as compared with alternative routes. This means that responsible agencies have taken actions to assure that these routes are suitable as shared routes and will be maintained in a manner consistent with the needs of bicyclists. Normally, bike routes are shared with motor vehicles.

A variant on Class III bikeways, shared lanes, or “sharrow” lanes, are becoming more common. Sharrows are a form of Class III bikeways where the general-purpose lane is too narrow for a bicycle and a vehicle to travel safely side-by-side within the same lane. A sharrow symbol painted (Figure 9) on the roadway is used to indicate the likely lateral location of bikes in the lane to inform motor vehicles.
The Protected Bikeways Act of 2014 (Assembly Bill 1193 - Ting, Chapter 495) established Class IV bikeways for California. Class IV bikeways provide a right-of-way designated exclusively for bicycle travel adjacent to a roadway and which are protected from vehicular traffic. Types of separation include, but are not limited to, grade separation, flexible posts, inflexible physical barriers, or on-street parking. An example is shown in Figure 10.
Figure 10. Class IV Bikeway

(source: Gary Kavanagh image 1272: https://flic.kr/p/hxp5ei)
3. METHODOLOGY
This section provides a process overview, describes traffic forecasting, and discusses the methods/criteria used to evaluate level-of-service. A discussion of the significance criteria is also included.

3.1 Process Overview
The overall analysis process was structured to identify potential adverse transportation effects related to the proposed project:

- Traffic volumes and turning movements for the Existing 2021 Condition were determined from observed traffic counts taken on Thursday May 5, 2020 (pre pandemic); Tuesday May 18, 2021, and Thursday August 26, 2021. Consistent with other recent Folsom traffic studies, “post pandemic” counts were factored up to account for the impact of COVID 19 closures on the transportation system. AM peak-hour counts were increased by 52% and PM peak-hour counts were increased by 28%.

- EPAP 2026 volumes without the Project were based on growth from all reasonably foreseeable projects effecting the study intersections based on the greater of two forecasting approaches:
 - Trips from approved projects and reasonably foreseeable projects, or five years of growth based on the City of Folsom General Plan travel demand model. Travel demand model growth was based on linear interpolation between the model base year and cumulative year, with the cumulative year trip tables assigned to the base year network to eliminate the effects of the future Oak Avenue Parkway interchange and Empire Ranch interchange.
 - Travel demand model growth was used in this study because it resulted in higher traffic volumes than growth from identified projects. Particularly at the intersections of Iron Point Road and Prairie City Road.
 - The travel demand model was calibrated to local conditions using the traffic counts and travel demand model forecasts interpolated to 2021. The NCHRP 255 adjustment was applied to all future volume forecasts at intersections 1-13. Volumes at intersections 14 and 15 were scaled up based on growth on travel demand model growth on their TAZ's centroid connectors. 2021 traffic counts were used as a floor to protect against negative growth.

- Cumulative 2035 traffic volumes were based on existing traffic counts adjusted for growth from the City of Folsom General Plan travel demand model. Local calibration and NCHRP adjustments were applied similar to the 2026 methodology described above. Turning movements at the Oak Avenue Parkway interchange (intersections 16 and 17) were taken directly from the travel demand model.
Study intersection and segment traffic operations were analyzed both with and without the proposed project to identify potential violations of General Plan level-of-service policies.

California Environmental Quality ACT (CEQA) VMT impacts were evaluated using screening tools published by the Sacramento Area Council of Governments (SACOG).

3.2 Level-of-Service Methodology
Level-of-service (LOS) is a qualitative indication of the level of delay and congestion experienced by motorists using an intersection. Levels-of-service are designated by the letters A through F, with A being the best conditions and F being the worst (high delay and congestion). Calculation methodologies, measures of performance, and thresholds for each letter grade differ for road segments, signalized intersections, and unsignalized intersections.

Based on guidance from City of Folsom staff, the following procedures described below for intersection and segment traffic operations analysis were selected for this study.

Intersection Traffic Operations Analysis

Signalized Intersections

The methodology from the Highway Capacity Manual (HCM) 6th Edition², are used to analyze signalized intersections. Level-of-service can be characterized for the entire intersection, each approach, or by lane group. Control delay alone (the weighted average delay for all vehicles entering the intersection) is used to characterize level-of-service for the entire intersection or an approach. Control delay and volume to capacity ratio are used to characterize level-of-service for lane groups. The average delay criteria used to determine the level-of-service at signalized intersections is presented in Table 3. The HCM 2010 methodology is used as the primary method. HCM 2000 methods are only utilized where the signal phasing is incompatible with HCM 2010 methods.

<table>
<thead>
<tr>
<th>Level-of-Service</th>
<th>Description</th>
<th>Average Delay¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very Low Delay: This level-of-service occurs when progression is extremely favorable, and most vehicles arrive during a green phase. Most vehicles do not stop at all.</td>
<td>< 10.0</td>
</tr>
<tr>
<td>B</td>
<td>Minimal Delays: This level-of-service generally occurs with good progression, short cycle lengths, or both. More vehicles stop than at LOS A, causing higher levels of average delay.</td>
<td>10.1-20.0</td>
</tr>
<tr>
<td>C</td>
<td>Acceptable Delay: Delay increases due to only fair progression, longer cycle lengths, or both. Individual cycle failures (to service all waiting vehicles) may begin to appear at this level of service. The number of vehicles stopping is significant, though many still pass through the intersection without stopping.</td>
<td>20.1-35.0</td>
</tr>
</tbody>
</table>

D Approaching Unstable/Tolerable Delays: The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

E Unstable Operation/Significant Delays: This is considered by many agencies the upper limit of acceptable delays. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent occurrences.

F Excessive Delays: This level, considered to be unacceptable to most drivers, often occurs with oversaturation (i.e., when arrival flow rates exceed the capacity of the intersection). It may also occur at high v/c ratios below 1.00 with many individual cycle failures. Poor progression and long cycle lengths may also contribute to such delay levels.

Note 1: Weighted average of delay on all approaches. This is the measure used by the Highway Capacity Manual to determine level-of-service. Any movement with a volume-to-capacity ratio (v/c) greater than 1.0 is considered to be level-of-service F.

Unsignalized Intersections

The methodology from HCM 6th Edition is used for the analysis of unsignalized intersections. At an unsignalized intersection, most of the main street traffic is un-delayed, and by definition have acceptable conditions. The main street left-turn movements and the minor street movements are all susceptible to delay of varying degrees. Generally, the higher the main street traffic volumes, the higher the delay for the minor movements. Separate methods are utilized for Two-Way Stop-Controlled (TWSC) intersections and All-Way Stop-Controlled (AWSC) intersections.

- TWSC: The methodology for analysis of two-way stop-controlled intersections calculates an average total delay per vehicle for each minor street movement and for the major street left-turn movements, based on the availability of adequate gaps in the main street through traffic. A level-of-service designation is assigned to individual movements or combinations of movements (in the case of shared lanes) based upon delay, it is not defined for the intersection as a whole. Unsignalized intersection level-of-service reported herein is for each movement (or group of movements) based upon the respective average delay per vehicle. Table 4 presents the average delay criteria used to determine the level-of-service at TWSC and AWSC intersections.

- AWSC: At all-way stop-controlled intersections, the level-of-service is determined by the weighted average delay for all vehicles entering the intersection. The methodologies for these types of intersections calculate a single weighted average delay and level-of-service for the intersection as a whole. The average delay criteria used to determine the level-of-service at all-way stop intersections is the same as that presented in Table 4. Level-of-service for specific movements can also be determined based on the TWSC methodology.
It is not unusual for some of the minor street movements at unsignalized intersections to have level-of-service D, E, or F conditions while the major street movements have level-of-service A, B, or C conditions. In such a case, the minor street traffic experiences delays that can be substantial for individual minor street vehicles, but the majority of vehicles using the intersection have very little delay. Usually in such cases, the minor street traffic volumes are relatively low. If the minor street volume is large enough, improvements to reduce the minor street delay may be justified, such as channelization, widening, or signalization.

Table 4. Level-of-Service Criteria for Unsignalized Intersections

<table>
<thead>
<tr>
<th>Level of Service (LOS)</th>
<th>Description</th>
<th>TWSC¹ Average Delay by Movement (seconds / vehicle)</th>
<th>AWSC² Intersection Wide Average Delay (seconds / vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Little or no delay</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>B</td>
<td>Short traffic delay</td>
<td>> 10 and < 15</td>
<td>> 10 and < 15</td>
</tr>
<tr>
<td>C</td>
<td>Average traffic delays</td>
<td>> 15 and < 25</td>
<td>> 15 and < 25</td>
</tr>
<tr>
<td>D</td>
<td>Long traffic delays</td>
<td>> 25 and < 35</td>
<td>> 25 and < 35</td>
</tr>
<tr>
<td>E</td>
<td>Very long traffic delays</td>
<td>> 35 and < 50</td>
<td>> 35 and < 50</td>
</tr>
<tr>
<td>F</td>
<td>Extreme delays potentially affecting other traffic movements in the intersection</td>
<td>> 50 (or, v/c >1.0)</td>
<td>> 50</td>
</tr>
</tbody>
</table>

Note 1: Two-Way Stop-Control (TWSC) level-of-service is calculated separately for each minor street movement (or shared movement) as well as major street left turns using these criteria. Any movement with a volume to capacity ratio (v/c) greater than 1.0 is considered to be level-of-service F.

Note 2: All-Way Stop-Control (AWSC) assessment of level-of-service at the approach and intersection levels is based solely on control delay.

Signal Warrants

At each unsignalized intersection, the potential need for a traffic signal was evaluated. Traffic signal warrants are a series of standards that provide guidelines for determining if a traffic signal is appropriate. Signal warrant analyses are typically conducted at intersections of uncontrolled major streets and stop sign-controlled minor streets. If one or more signal warrants are met, signalization of the intersection may be appropriate. However, a signal should not be installed if none of the warrants are met, since the installation of signals would increase delays on the previously uncontrolled major street, and, may increase the occurrence of particular types of accidents.

As stated in the 2014 California Edition of the Manual on Uniform Traffic Control Devices (California MUTCD 2014)³, “An engineering study of traffic conditions, pedestrian characteristics,

and physical characteristics of the location shall be performed to determine whether installation of a traffic control signal is justified at a particular location.

The investigation of the need for a traffic control signal shall include an analysis of factors related to the existing operation and safety at the study location and the potential to improve these conditions, and the applicable factors contained in the following traffic signal warrants:

- Warrant 1, Eight-hour Vehicular Volume
- Warrant 2, Four-hour Vehicular Volume
- Warrant 3, Peak-hour
- Warrant 4, Pedestrian Volume
- Warrant 5, School Crossing
- Warrant 6, Coordinated Signal System
- Warrant 7, Crash Experience
- Warrant 8, Roadway Network
- Warrant 9, Intersection Near a Grade Crossing

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.”

Consistent with the industry standard of practice, this Traffic Impact Analysis did not evaluate the full panoply of warrants for traffic signals, but instead focused on the peak-hour warrant. The MUTCD states that, “This [peak-hour] signal warrant shall be applied only in unusual cases, such as office complexes, manufacturing plants, industrial complexes, or high-occupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time.” So, the peak-hour warrant is being used in this impact analysis study as an “indicator” of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed the peak-hour warrant are considered (for the purposes of this impact analysis) to be likely to meet one or more of the other signal warrants (such as the 4-hour or 8-hour warrants). This peak-hour analysis is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction.

Unsignalized intersections were evaluated using the Peak-hour Volume Warrant (Warrant No. 3) in the California MUTCD 2014. The Peak-hour Volume Warrant was applied where the minor street experiences long delays in entering or crossing the major street for at least one hour in a day.

Even if the Peak-hour Volume Warrant is met, a more detailed signal warrant study is recommended before a signal is installed. The more detailed study should consider volumes during the daily peak-hours of roadway traffic, pedestrian traffic, and accident histories.
Freeway Segment Analysis

Freeway merge/diverge segments and basic segments were analyzed utilizing the methodologies outlined in Chapters 12 and 13 of the Highway Capacity Manual, 2010 (HCM 2010)\(^4\).

Basic Segments

Basic freeway segments operations and level-of-service is defined by density (passenger cars per mile per lane) which depends upon traffic volumes, and segment, characteristics. These characteristics include the geometry, grade, free flow speeds, and heavy vehicles. Table 6 shows the relationship of level-of-service to freeway density for merge, diverge, and weaving segments.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Maximum Density (passenger vehicles per mile per lane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><11</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
</tr>
<tr>
<td>C</td>
<td>26</td>
</tr>
<tr>
<td>D</td>
<td>35</td>
</tr>
<tr>
<td>E</td>
<td>45</td>
</tr>
<tr>
<td>F</td>
<td>> 45, or Demand exceeds capacity</td>
</tr>
</tbody>
</table>

Table 5. Level-of-Service Criteria – Basic Freeway Segments

Merge, Diverge, and Weave Segments

Freeway merge and diverge segments operations and level-of-service is defined by density (passenger cars per mile per lane) which depends upon traffic volumes and the ramp characteristics. These characteristics include the length and type of acceleration/deceleration lanes, free-flow speeds, number of lanes, grade, heavy vehicles, and types of facilities. Table 6 and Table 7 shows the relationship of level-of-service to freeway density for merge, diverge, and weaving segments.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Maximum Density (passenger vehicles per mile per lane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><10</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>28</td>
</tr>
<tr>
<td>D</td>
<td>35</td>
</tr>
<tr>
<td>E</td>
<td>> 35</td>
</tr>
<tr>
<td>F</td>
<td>Demand exceeds capacity</td>
</tr>
</tbody>
</table>

Table 6. Level-of-Service Criteria – Freeway Ramp Merge/Diverge Areas

Table 7. Level-of-Service Criteria - Freeway Weaving Areas

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Maximum Density (passenger vehicles per mile per lane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-10</td>
</tr>
<tr>
<td>B</td>
<td>>10-20</td>
</tr>
<tr>
<td>C</td>
<td>>20-28</td>
</tr>
<tr>
<td>D</td>
<td>>28-35</td>
</tr>
<tr>
<td>E</td>
<td>> 35-43</td>
</tr>
<tr>
<td>F</td>
<td>>43, or demand exceeds capacity</td>
</tr>
</tbody>
</table>

3.3 Standards of Significance

Level-of-service impacts of the proposed project were determined based on the methods described above and identified as either "significant" or "less-than-significant" in the following thresholds:

City of Folsom

Policy M 4.13 of the City of Folsom General Plan (adopted August 28, 2018) calls for the City to:

Strive to achieve at least traffic Level of Service “D” (or better) for local streets and roadways throughout the City. In designing transportation improvements, the City will prioritize use of smart technologies and innovative solutions that maximize efficiencies and safety while minimizing the physical footprint. During the course of plan buildout, it may occur that temporarily higher levels-of-service result where roadway improvements have not been adequately phased as development proceeds. However, this situation will be minimized based on annual traffic studies and monitoring programs. City Staff will report to the City Council at regular intervals via the Capital Improvement Program process for the Council to prioritize projects integral to achieving level-of-service D or better.

Consistent with historical practice within the City of Folsom, the General Plan EIR also includes a criterion addressing potential impacts at locations that operate at level-of-service E or F under no-project conditions. Under that standard, a significant impact would occur if the proposed project would:

Increase the average delay by five seconds or more at an intersection that currently operates (or is projected to operate) at an unacceptable level-of-service under “no-project” conditions.

For the purposes of this analysis, an impact is considered potentially significant if implementation of the Project would result in any of the following:

- Cause an intersection in Folsom that currently operates (or is projected to operate) at level-of-service D or better to degrade to level-of-service E, or worse;
• Increase the average delay by five seconds or more at an intersection in Folsom that currently operates (or is projected to operate) at an unacceptable level-of-service E or F.

Freeway Facilities
An impact is considered significant on freeway facilities if the project causes the facility to change from an acceptable to unacceptable level-of-service. For facilities that are or will be operating at unacceptable level-of-service without the project, an impact is considered significant if:

• The existing level-of-service cannot be maintained with the addition of project traffic;
• The project traffic increases vehicle density on a freeway mainline segment or freeway ramp junction by 0.1 passenger cars per lane per mile;
• The project increases the number of peak-hour vehicles on a freeway mainline segment or freeway ramp junction by more than 1 percent.

Per the Caltrans’ Guide for the Preparation of Traffic Impact Studies, Caltrans strives to maintain a target level of service at the transition between level-of-service C and level-of-service D on state highway facilities. However, for the affected portion of US 50, Caltrans has established a concept level-of-service E threshold. For consistency with other traffic impact studies performed in the City of Folsom that considered US 50, level-of-service E was selected as the minimum standard for all study freeway facilities.

Bicycle/Pedestrian/Transit Facilities
An impact is considered significant if implementation of the Project would:

• Inhibit the use of bicycle, pedestrian, or transit facilities;
• Eliminate existing bicycle, pedestrian, or transit facilities;
• Prevent the implementation of planned bicycle, pedestrian, or transit facilities.

3.6 Analysis Tools
Macroscopic Intersection Analysis
Control delay and level-of-service for study intersections were calculated using the PTV Vistro analysis software (Version 2022 SP 0-0). Vistro is a software package for modeling vehicle delay and optimizing traffic signal timings. Version 6 implements the methodologies of the 2000 (4th Ed.), 2010 (5th Ed.), and the 6th Ed. of the HCM for signalized and unsignalized intersections. Vistro requires data on road characteristics (geometric), traffic counts, and the signal timing data for each analysis intersection.
Macroscopic Freeway Analysis

Basic freeway segments, merge, and diverge segments were analyzed using FREEVAL 2015e\(^7\).

FREEVAL provides freeway planning-level capacity analyses based on HCM 6\(^{th}\) Edition for undersaturated and oversaturated conditions for estimating vehicle density and level-of-service.

4. EXISTING 2021 CONDITIONS

This section presents the Existing Condition. For purposes of this study, Existing Conditions represent typical midweek, non-holiday, traffic volumes in late August/early September of 2021 adjusted to negate the impact of the COVID-19 pandemic on traffic volumes.

4.1 Existing 2021 Condition

Data Sources

The analysis tools require a variety of data to generate the evaluation criteria. The following sections describe data collection procedures for Existing Conditions. There were three primary data elements (roadway characteristics, intersection turning movement counts, and traffic control data); and two supplementary elements (other recent studies, and field data) that comprised the data collection program for this traffic analysis.

Roadway Geometry and Usage Characteristics

The geometry and usage data for the analysis were collected through aerial photographs, field visits, and prior studies. Current intersection geometry was field validated. Table 8 shows the key items included in the geometric data and the source for each item.

Table 8. Key Items and Sources for Geometry and Usage Data

<table>
<thead>
<tr>
<th>Key Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane configurations and width</td>
<td>Aerial photographs and field visits</td>
</tr>
<tr>
<td>Lane utilization</td>
<td>Prior studies, aerial photographs, and field visits</td>
</tr>
<tr>
<td>Intersection spacing</td>
<td>Aerial photographs and field visits</td>
</tr>
<tr>
<td>Length of storage bays</td>
<td>Aerial photographs and field visits</td>
</tr>
<tr>
<td>Transit stops and routes</td>
<td>Transit schedules, aerial photographs, and field visits</td>
</tr>
<tr>
<td>Turn prohibitions or allowance</td>
<td>Aerial photographs, field visits, and traffic counts</td>
</tr>
</tbody>
</table>

Lane configurations and width – These data specify the number of lanes and the width of the roadway in each direction, and the directional turns that are allowed from each lane.

Lane utilization – These data specify how lanes are used by drivers, such as traffic distribution between lanes on a multi-lane roadway.

Intersection spacing – These data refer to the distance (in feet) between intersections.

Length of storage bays – These data refer to the length (in feet) of available storage for left-turning or right-turning vehicles where exclusive turn lanes are available. It is collected for right-turn lanes when the parking lane is used as a right-turn lane.

Transit stops and routes – A transit stop is an area where passengers await, board, alight, and transfer between transit vehicles. A transit route is the roadway that transit vehicles operate on.
Turn prohibitions or allowance – These data specify if right turns on red (RTOR) are allowed on the roadway.

Intersection Turning Movement Counts

Existing morning and evening peak-period vehicle and pedestrian turning movement counts were collected at study intersections on Thursday May 5, 2020; Tuesday May 18, 2021; and Thursday August 26, 2021. Pre COVID-19 pandemic counts, collected along East Bidwell Street on March 5, 2020, were used to factor up the 2021 counts to account for short term traffic reductions caused by the economic effect of COVID-19. AM peak hour counts were factored up by 52% and PM peak-hour counts were factored up by 28%. Traffic count data sheets are provided in Appendix A of this report. Peak-hour traffic counts were used to conduct the intersection level-of-service analysis. Turning movement counts at consecutive intersections were balanced and adjusted where appropriate to conservatively reflect existing traffic flows. Observed intersection peak hour factors (PHF) were applied. Figure 11 provides a summary of the intersection lane geometry and peak-period turning movements under Existing Conditions.

Existing Condition Intersection and Segment Level-of-Service

Table 9 and Table 10 present a summary of level-of-service results for the study intersections under Existing Conditions. The results indicate that all study segments are anticipated to operate at an acceptable level-of-service. Three study intersections exceed the General Plan level-of-service standard prior to the addition of Project traffic.

- Prairie City Rd/American Aggregate Dr would operate at a deficient level-of-service during the AM peak if not for the Covid-19 related traffic reductions.
- Prairie City Rd/Iron Point Rd would operate at a deficient level-of-service during the AM and PM peak if not for the Covid-19 related traffic reductions.
- East Bidwell St/Iron Point Rd would operate at a deficient level-of-service during the PM peak if not for the Covid-19 related traffic reductions.

These locations are shown in orange highlight in the tables below. Calculation sheets for intersection delay and level-of-service are provided in Appendix B.
Figure 11. Existing Condition Turn Movements and Geometry
Figure 11. Existing Condition Turn Movements and Geometry (continued)
Table 9. Existing 2021 Intersection Delay and Level-of-Service (LOS)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>Without Project</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>PM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Delay LOS*)</td>
<td>(Delay LOS*)</td>
<td></td>
</tr>
<tr>
<td>1. Prairie City Rd/US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.3 B</td>
<td>8.3 A</td>
<td></td>
</tr>
<tr>
<td>2. Prairie City Rd/US 50 westbound ramps</td>
<td>Signal</td>
<td>19.4 B</td>
<td>8.9 A</td>
<td></td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
<td>66.1 E</td>
<td>28.8 C</td>
<td></td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
<td>88.7 F</td>
<td>64.5 E</td>
<td></td>
</tr>
<tr>
<td>5. Iron Point Rd /Grover Rd</td>
<td>Signal</td>
<td>50.9 D</td>
<td>42.3 D</td>
<td></td>
</tr>
<tr>
<td>6. Iron Point Rd /Oak Avenue Pkwy</td>
<td>Signal</td>
<td>36.2 D</td>
<td>37.8 D</td>
<td></td>
</tr>
<tr>
<td>7. Iron Point Rd /West Kaiser access road</td>
<td>TWSC**</td>
<td>11.9 B Northbound</td>
<td>12.9 B Northbound</td>
<td></td>
</tr>
<tr>
<td>8. Iron Point Rd /Rowberry Way</td>
<td>Signal</td>
<td>14.3 B</td>
<td>14.2 B</td>
<td></td>
</tr>
<tr>
<td>9. Iron Point Rd /Safe Credit Union access</td>
<td>TWSC**</td>
<td>15.6 C WB left/U</td>
<td>23.1 C WB left/U</td>
<td></td>
</tr>
<tr>
<td>10. Iron Point Rd /Broadstone Pkwy</td>
<td>Signal</td>
<td>15.6 B</td>
<td>19.6 B</td>
<td></td>
</tr>
<tr>
<td>11. Iron Point Rd /East Bidwell St</td>
<td>Signal</td>
<td>45.5 D</td>
<td>94.3 F</td>
<td></td>
</tr>
<tr>
<td>12. East Bidwell St/US 50 westbound ramps</td>
<td>Signal</td>
<td>29.5 C</td>
<td>35.1 D</td>
<td></td>
</tr>
<tr>
<td>13. East Bidwell St/US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.2 B</td>
<td>21.5 C</td>
<td></td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSC**</td>
<td>9.1 A Northbound</td>
<td>8.8 A Northbound</td>
<td></td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSC**</td>
<td>9.6 A Southbound</td>
<td>9.3 A Southbound</td>
<td></td>
</tr>
</tbody>
</table>

* Level of Service
** Two Way Stop Control: LOS is defined by delay for the worst movement/shared movement, which is listed with the LOS results.
Table 10. Existing 2021 US 50 Segment Density and Level-of-Service (LOS)

<table>
<thead>
<tr>
<th>US 50 Segment</th>
<th>Segment Type</th>
<th>Without Project</th>
<th>AM (Density LOS*)</th>
<th>PM (Density LOS*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>24.5 C</td>
<td>17.3 B</td>
<td></td>
</tr>
<tr>
<td>2. US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>22.9 C</td>
<td>17.1 B</td>
<td></td>
</tr>
<tr>
<td>3. US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>24.3 C</td>
<td>19.0 B</td>
<td></td>
</tr>
<tr>
<td>4. US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>24.8 C</td>
<td>18.8 C</td>
<td></td>
</tr>
<tr>
<td>5. US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. US 50 westbound Oak Avenue diagonal onramp to Prairie City Rd offramp</td>
<td>Weave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. US 50 westbound Prairie City offramp</td>
<td>Diverge</td>
<td>32.0 D</td>
<td>26.1 C</td>
<td></td>
</tr>
<tr>
<td>9. US 50 westbound Prairie City loop onramp</td>
<td>Merge</td>
<td>24.1 C</td>
<td>21.6 C</td>
<td></td>
</tr>
<tr>
<td>10. US 50 westbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>24.5 C</td>
<td>21.5 C</td>
<td></td>
</tr>
<tr>
<td>11. US 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td>28.6 D</td>
<td>31.0 D</td>
<td></td>
</tr>
<tr>
<td>12. US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>18.6 B</td>
<td>23.2 C</td>
<td></td>
</tr>
<tr>
<td>13. US 50 eastbound Prairie City fly-over onramp</td>
<td>Merge</td>
<td>19.6 B</td>
<td>25.4 C</td>
<td></td>
</tr>
<tr>
<td>14. US 50 eastbound Prairie City fly-over onramp to Oak Ave offramp</td>
<td>Weave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. US 50 eastbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. US 50 eastbound Oak Avenue diagonal onramp</td>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. US 50 eastbound Oak Ave to East Bidwell</td>
<td>Basic</td>
<td>17.5 B</td>
<td>23.5 C</td>
<td></td>
</tr>
<tr>
<td>18. US 50 eastbound East Bidwell offramp</td>
<td>Diverge</td>
<td>10.4 B</td>
<td>16.5 B</td>
<td></td>
</tr>
<tr>
<td>19. US 50 eastbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>9.3 A</td>
<td>13.9 B</td>
<td></td>
</tr>
<tr>
<td>20. US 50 eastbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>7.5 A</td>
<td>13.1 B</td>
<td></td>
</tr>
</tbody>
</table>

* Level of Service
4.2 Assessment of Proposed Project

Trip Generation

Traffic generated by the proposed project was based on Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition (2017), and is provided in Table 11 below.

Table 11. Project Trip Generation

<table>
<thead>
<tr>
<th>Location</th>
<th>Quantity</th>
<th>Units</th>
<th>Metric</th>
<th>Daily</th>
<th>AM Peak-Hr</th>
<th>PM Peak-Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tot In Out</td>
<td>Tot In Out</td>
</tr>
<tr>
<td>"Lot 6"</td>
<td>100</td>
<td>du</td>
<td>Rate</td>
<td>5.44</td>
<td>0.32 27% 73%</td>
<td>0.41 60% 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trips</td>
<td>544</td>
<td>32 9 23</td>
<td>41 25 16</td>
</tr>
<tr>
<td>"Lot 1"</td>
<td>153</td>
<td>du</td>
<td>Rate</td>
<td>5.44</td>
<td>0.32 27% 73%</td>
<td>0.41 60% 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trips</td>
<td>832</td>
<td>49 13 36</td>
<td>63 38 25</td>
</tr>
<tr>
<td>Total</td>
<td>253</td>
<td>du</td>
<td>Rate</td>
<td>5.44</td>
<td>0.32 27% 73%</td>
<td>0.41 60% 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trips</td>
<td>1376</td>
<td>81 22 59</td>
<td>104 62 42</td>
</tr>
</tbody>
</table>

Trip Distribution and Assignment

Trip distribution was based on observed traffic counts and select zone analysis within the travel demand model, and nearby projects. Because of the planned additions of freeway crossings and interchanges by 2035, separate distributions and assignments were done for existing 2021/EPAP 2026 conditions and Cumulative 2035 condition.

Project trip distribution and assignment for existing 2021 and EPAP 2026 conditions are shown in Figure 12 and Figure 13. Project trip distribution and assignment for existing 2021 and EPAP 2026 conditions are shown in Figure 14 and Figure 15.
Figure 12. Project Trip Distribution for Existing 2021 and EPAP 2026 Conditions
Figure 13. Project Trip Assignment for Existing 2021 and EPAP 2026 Conditions
Figure 13. Project Trip Assignment for Existing 2021 and EPAP 2026 Conditions (continued)
Figure 14. Project Trip Distribution for Cumulative 2035 Conditions
Figure 15. Project Trip Assignment for Cumulative 2035 Conditions
Figure 15. Project Trip Assignment for Cumulative 2035 Conditions (continued)
4.3 Existing 2021 with Project Conditions

Peak-hour traffic associated with the Project was added to the Existing 2021 turning volumes at each intersection. Delay and level-of-service were determined at the study intersections and segments. Figure 16 summarizes the turning movements and lane configurations for the Existing with Project Condition. Table 12 and Table 13 presents a summary of the level-of-service results for the study intersections and segments.

The results indicate that all study segments are anticipated to operate at an acceptable level-of-service; three study intersections exceed the General Plan level-of-service standard prior to the addition of Project traffic.

- Prairie City Rd/American Aggregate Dr would operate at a deficient level-of-service during the AM peak if not for the Covid-19 related traffic reductions.
- Prairie City Rd/Iron Point Rd would operate at a deficient level-of-service during the AM and PM peak if not for the Covid-19 related traffic reductions.
- East Bidwell St/Iron Point Rd would operate at a deficient level-of-service during the PM peak if not for the Covid-19 related traffic reductions.

These locations are shown in orange highlight in the tables below. Because the increase in delay is less than five seconds, these violations of the General Plan level-of-service policy is not considered a Project impact. Calculation sheets for intersection delay and level-of-service are provided in Appendix B.

In addition to level-of-service, the 95th percentile left turn queues with and without the project were reviewed to identify any study intersections with Project queueing impacts. One location, the westbound left turn movement at Intersection #4 Prairie City Rd/Iron Point Rd during the AM peak has a queueing deficiency that Project traffic is anticipated to add more than one vehicle length to. This is considered a Project Related deficiency. An Abatement Measure to address this deficiency is provided in Section 8.

8. To avoid confusion, General Plan deficiencies are labeled as “deficiencies” rather than (CEQA) “impacts”, and the related improvements are labeled as “abatement measures” rather than “mitigation measures”. This is done to emphasis that level-of-service and/or queueing concerns are not considered to be impacts under CEQA.
Figure 16. Existing 2021 with Project Condition Turning Movements and Lane Geometry
Figure 16. Existing 2021 with Project Condition Turning Movements and Lane Geometry (continued)
Table 12. Existing 2021 Intersection Delay and Level-of-Service (LOS), with and without Project

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>AM (Delay LOS*)</th>
<th>PM (Delay LOS*)</th>
<th>AM (Delay LOS*)</th>
<th>PM (Delay LOS*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.3 B</td>
<td>8.3 A</td>
<td>10.4 B</td>
<td>8.4 A</td>
</tr>
<tr>
<td>2. Prairie City Rd/US 50 westbound ramps</td>
<td>Signal</td>
<td>19.4 B</td>
<td>8.9 A</td>
<td>19.5 B</td>
<td>8.9 A</td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
<td>66.1 E</td>
<td>28.8 C</td>
<td>66.3 E</td>
<td>28.9 C</td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
<td>88.7 F</td>
<td>64.5 E</td>
<td>90.6 F</td>
<td>66.1 E</td>
</tr>
<tr>
<td>5. Iron Pt Road/Grover Rd</td>
<td>Signal</td>
<td>50.9 D</td>
<td>42.3 D</td>
<td>51.4 D</td>
<td>42.5 D</td>
</tr>
<tr>
<td>6. Iron Point Rd/Oak Avenue Pkwy</td>
<td>Signal</td>
<td>36.2 D</td>
<td>37.8 D</td>
<td>36.4 D</td>
<td>38.4 D</td>
</tr>
<tr>
<td>7. Iron Point Rd /West Kaiser access road</td>
<td>TWSC**</td>
<td>11.9 B Northbound</td>
<td>12.9 B Northbound</td>
<td>11.9 B Northbound</td>
<td>13 B Northbound</td>
</tr>
<tr>
<td>8. Iron Point Rd /Rowberry Way</td>
<td>Signal</td>
<td>14.3 B</td>
<td>14.2 B</td>
<td>14.8 B</td>
<td>14.5 B</td>
</tr>
<tr>
<td>9. Iron Point Rd /Safe Credit Union access</td>
<td>TWSC**</td>
<td>15.6 C WB left/U</td>
<td>23.1 C WB left/U</td>
<td>16 C WB left/U</td>
<td>23.6 C WB left/U</td>
</tr>
<tr>
<td>10. Iron Point Rd/Broadstone Pkwy</td>
<td>Signal</td>
<td>15.6 B</td>
<td>19.6 B</td>
<td>15.7 B</td>
<td>19.7 B</td>
</tr>
<tr>
<td>11. Iron Point Rd /East Bidwell St</td>
<td>Signal</td>
<td>45.5 D</td>
<td>98.3 F</td>
<td>46 D</td>
<td>93.3 F</td>
</tr>
<tr>
<td>12. East Bidwell St/US 50 westbound ramps</td>
<td>Signal</td>
<td>29.5 C</td>
<td>35.1 D</td>
<td>29.6 C</td>
<td>35.7 D</td>
</tr>
<tr>
<td>14. APN 072-3120-023 “Lot 6” access</td>
<td>TWSC**</td>
<td>9.1 A Northbound</td>
<td>8.8 A Northbound</td>
<td>9.2 A Northbound</td>
<td>8.8 A Northbound</td>
</tr>
<tr>
<td>15. APN 072-3120-023 “Lot 1” access</td>
<td>TWSC**</td>
<td>9.6 A Southbound</td>
<td>9.3 A Southbound</td>
<td>10.3 B Southbound</td>
<td>10.2 B Southbound</td>
</tr>
</tbody>
</table>

* Level of Service
** Two Way Stop Control: LOS is defined by delay for the worst movement/shared movement, which is listed with the LOS results.
Table 13. Existing 2021 US 50 Segment Density and Level-of-Service (LOS), with and without Project

<table>
<thead>
<tr>
<th>US 50 Segment</th>
<th>Segment Type</th>
<th>Without Project</th>
<th>With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM (Density LOS*)</td>
<td>PM (Density LOS*)</td>
<td>AM (Density LOS*)</td>
</tr>
<tr>
<td>1. US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>24.5 C</td>
<td>17.3 B</td>
</tr>
<tr>
<td>2. US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>22.9 C</td>
<td>17.1 B</td>
</tr>
<tr>
<td>3. US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>24.3 C</td>
<td>19.0 B</td>
</tr>
<tr>
<td>4. US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>24.8 C</td>
<td>18.8 C</td>
</tr>
<tr>
<td>5. US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td>Not applicable to this scenario</td>
<td>Not applicable to this scenario</td>
</tr>
<tr>
<td>6. US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>22.9 C</td>
<td>28.6 D</td>
</tr>
<tr>
<td>7. US 50 westbound Oak Avenue diagonal onramp to Prairie City Rd offramp</td>
<td>Weave</td>
<td>Not applicable to this scenario</td>
<td>Not applicable to this scenario</td>
</tr>
<tr>
<td>8. US 50 westbound Prairie City offramp</td>
<td>Diverge</td>
<td>24.1 C</td>
<td>21.6 C</td>
</tr>
<tr>
<td>9. US 50 westbound Prairie City loop onramp</td>
<td>Merge</td>
<td>24.5 C</td>
<td>21.5 C</td>
</tr>
<tr>
<td>10. US 50 westbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>28.6 D</td>
<td>31.0 D</td>
</tr>
<tr>
<td>11. US 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td>18.6 B</td>
<td>23.2 C</td>
</tr>
<tr>
<td>12. US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>19.6 B</td>
<td>25.4 C</td>
</tr>
<tr>
<td>13. US 50 eastbound Prairie City fly-over onramp</td>
<td>Merge</td>
<td>Not applicable to this scenario</td>
<td>Not applicable to this scenario</td>
</tr>
<tr>
<td>14. US 50 eastbound Prairie City fly-over onramp to Oak Ave offramp</td>
<td>Weave</td>
<td>Not applicable to this scenario</td>
<td>Not applicable to this scenario</td>
</tr>
<tr>
<td>15. US 50 eastbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>17.5 B</td>
<td>23.5 C</td>
</tr>
<tr>
<td>16. US 50 eastbound Oak Avenue diagonal onramp</td>
<td>Merge</td>
<td>18.6 B</td>
<td>23.1 C</td>
</tr>
<tr>
<td>17. US 50 eastbound Oak Ave to East Bidwell</td>
<td>Basic</td>
<td>24.1 C</td>
<td>21.6 C</td>
</tr>
<tr>
<td>18. US 50 eastbound East Bidwell offramp</td>
<td>Diverge</td>
<td>10.4 B</td>
<td>16.5 B</td>
</tr>
<tr>
<td>19. US 50 eastbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>9.3 A</td>
<td>13.9 B</td>
</tr>
<tr>
<td>20. US 50 eastbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>7.5 A</td>
<td>13.1 B</td>
</tr>
</tbody>
</table>

* Level of Service
5. EXISTING PLUS APPROVED PROJECTS (EPAP) 2026 CONDITION WITH AND WITHOUT PROJECT

This section presents Existing Condition traffic plus traffic from planned and approved projects that are reasonably expected to be constructed by the time the project is constructed, corresponding to five years’ worth of growth.

5.1 EPAP 2026 Growth Increment

Five-year traffic forecasts were developed using two different methodologies, and the higher (more conservative) volume projections were used for this analysis.

- The first method was based on the traffic anticipated from approved projects that have not been fully built as of August 2021.
- The second method used the City of Folsom General Plan travel demand model to estimate growth through 2026. Base year (2015) and Cumulative year (2035) trip tables were both assigned to the base year model network. The resulting 2015 and 2035 volumes interpolated to 2021 and compared with counts to calibrate the model to conditions in the immediate project vicinity. Results were then interpolated to 2026 and the NCHRP 255 adjustment methodology applied. Supporting material for Traffic forecasting calculations are provided in Appendix C.

The second method resulted in higher traffic volumes and was therefore used as the bases for EPAP 2026 condition analysis.

5.2 EPAP 2026 Conditions

EPAP Conditions analysis utilizes lane configurations and signal timing plans from the Existing Conditions. Figure 17 summarizes the turning movements and lane configurations for the EPAP 2026 Conditions scenario. Table 14 and Table 15 present a summary of level-of-service results for the study intersections under EPAP 2026 Conditions.

The results indicate that all study segments are anticipated to operate at an acceptable level-of-service; three study intersections exceed the General Plan level-of-service standard prior to the addition of Project traffic.

- Prairie City Rd/American Aggregate Dr would operate at a deficient level-of-service during the AM peak if not for the Covid-19 related traffic reductions.
- Prairie City Rd/Iron Point Rd would operate at a deficient level-of-service during the AM and PM peak if not for the Covid-19 related traffic reductions.
- East Bidwell St/Iron Point Rd would operate at a deficient level-of-service during the AM and PM peak if not for the Covid-19 related traffic reductions.

9 The NCHRP 255 adjustment uses anticipated traffic growth on each intersections approach and departure legs and observed traffic counts to estimate future year turning movements.
These locations are shown in orange highlight in the tables below. Calculation sheets for intersection delay and level-of-service are provided in Appendix B.
Figure 17. EPAP 2026 Condition Turn Movements and Geometry
Figure 17. EPAP 2026 Condition Turn Movements and Geometry (continued)
Table 14. EPAP 2026 Intersection Delay and Level-of-Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>Without Project</th>
<th>AM (Delay LOS*)</th>
<th>PM (Delay LOS*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/US 50 eastbound ramps</td>
<td>Signal</td>
<td>15.2 B</td>
<td>10.5 B</td>
<td></td>
</tr>
<tr>
<td>2. Prairie City Rd/US 50 westbound ramps</td>
<td>Signal</td>
<td>60.5 E</td>
<td>10.2 B</td>
<td></td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
<td>110.5 F</td>
<td>30.8 C</td>
<td></td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
<td>123.4 F</td>
<td>72.4 E</td>
<td></td>
</tr>
<tr>
<td>5. Iron Point Rd/Grover Rd</td>
<td>Signal</td>
<td>52 D</td>
<td>43.4 D</td>
<td></td>
</tr>
<tr>
<td>6. Iron Point Rd/Oak Avenue Pkwy</td>
<td>Signal</td>
<td>36.8 D</td>
<td>40.4 D</td>
<td></td>
</tr>
<tr>
<td>7. Iron Point Rd/West Kaiser access road</td>
<td>TWSC**</td>
<td>12.4 B</td>
<td>13.7 B</td>
<td></td>
</tr>
<tr>
<td>8. Iron Point Rd/Rowberry Way</td>
<td>Signal</td>
<td>14.4 B</td>
<td>14.3 B</td>
<td></td>
</tr>
<tr>
<td>9. Iron Point Rd/Safe Credit Union access</td>
<td>TWSC**</td>
<td>16.9 C</td>
<td>27 D</td>
<td></td>
</tr>
<tr>
<td>10. Iron Point Rd/Broadstone Pkwy</td>
<td>Signal</td>
<td>16.3 B</td>
<td>20.5 C</td>
<td></td>
</tr>
<tr>
<td>11. Iron Point Rd/East Bidwell St</td>
<td>Signal</td>
<td>67.1 E</td>
<td>143.4 F</td>
<td></td>
</tr>
<tr>
<td>12. East Bidwell St/US 50 westbound ramps</td>
<td>Signal</td>
<td>46.9 D</td>
<td>53.5 D</td>
<td></td>
</tr>
<tr>
<td>13. East Bidwell St/US 50 eastbound ramps</td>
<td>Signal</td>
<td>12.9 B</td>
<td>25.4 C</td>
<td></td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSC**</td>
<td>9.1 A</td>
<td>8.8 A</td>
<td></td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSC**</td>
<td>9.5 A</td>
<td>9.8 A</td>
<td></td>
</tr>
</tbody>
</table>

* Level of Service
** Two Way Stop Control: LOS is defined by delay for the worst movement/shared movement, which is listed with the LOS results.
<table>
<thead>
<tr>
<th>US 50 Segment</th>
<th>Segment Type</th>
<th>Without Project AM (Density LOS*)</th>
<th>Without Project PM (Density LOS*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>25.9 C 17.8 B</td>
<td></td>
</tr>
<tr>
<td>2. US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>24.4 C 18.1 B</td>
<td></td>
</tr>
<tr>
<td>3. US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>25.9 C 21.2 C</td>
<td></td>
</tr>
<tr>
<td>4. US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>26.9 D 21.2 C</td>
<td></td>
</tr>
<tr>
<td>5. US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. US 50 westbound Oak Avenue diagonal onramp to Prairie City Rd offramp</td>
<td>weave</td>
<td>Not applicable to this scenario</td>
<td></td>
</tr>
<tr>
<td>8. US 50 westbound Prairie City offramp</td>
<td>Diverge</td>
<td>33.7 D 28.7 D</td>
<td></td>
</tr>
<tr>
<td>9. US 50 westbound Prairie City loop onramp</td>
<td>Merge</td>
<td>25.5 C 23.4 C</td>
<td></td>
</tr>
<tr>
<td>10. US 50 westbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>26.0 C 23.2 C</td>
<td></td>
</tr>
<tr>
<td>11. US 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td>30.5 D 33.3 D</td>
<td></td>
</tr>
<tr>
<td>12. US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>19.6 B 24.1 C</td>
<td></td>
</tr>
<tr>
<td>13. US 50 eastbound Prairie City fly-over onramp</td>
<td>Merge</td>
<td>21.1 C 26.3 C</td>
<td></td>
</tr>
<tr>
<td>14. US 50 eastbound Prairie City fly-over onramp to Oak Ave offramp</td>
<td>Weave</td>
<td>Not applicable to this scenario</td>
<td></td>
</tr>
<tr>
<td>15. US 50 eastbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. US 50 eastbound Oak Avenue diagonal onramp</td>
<td>Merge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. US 50 eastbound Oak Ave to East Bidwell</td>
<td>Basic</td>
<td>18.8 C 24.7 C</td>
<td></td>
</tr>
<tr>
<td>18. US 50 eastbound East Bidwell offramp</td>
<td>Diverge</td>
<td>11.8 B 17.6 B</td>
<td></td>
</tr>
<tr>
<td>19. US 50 eastbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>9.3 A 13.9 B</td>
<td></td>
</tr>
<tr>
<td>20. US 50 eastbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>8.5 A 14.2 B</td>
<td></td>
</tr>
</tbody>
</table>

* Level of Service
5.3 EPAP 2026 with Project Condition
Peak-hour traffic associated with the Project was added to anticipated EPAP 2026 turning volumes at each intersection. Delay and level-of-service were then determined at the study intersections. Figure 18 summarizes the turning movements and lane configurations for the EPAP 2026 with Project condition. Table 16 and Table 17 present a summary of the level-of-service results for the study intersections.

The results indicate that all study segments are anticipated to operate at an acceptable level-of-service; three study intersections exceed the General Plan level-of-service standard prior to the addition of Project traffic.

- Prairie City Rd/American Aggregate Dr would operate at a deficient level-of-service during the AM peak if not for the Covid-19 related traffic reductions.
- Prairie City Rd/Iron Point Rd would operate at a deficient level-of-service during the AM and PM peak if not for the Covid-19 related traffic reductions.
- East Bidwell St/Iron Point Rd would operate at a deficient level-of-service during the AM and PM peak if not for the Covid-19 related traffic reductions.

These locations are shown in orange highlight in the tables below. Because the increase in delay is less than five seconds, these violations of the General Plan level-of-service policy is not considered a Project impact. Calculation sheets for intersection delay and level-of-service are provided in Appendix B.

In addition to level-of-service, the 95th percentile left turn queues with and without the project were reviewed to identify any study intersections with Project queueing impacts. One location, the westbound left turn movement at Intersection #4 Prairie City Rd/Iron Point Rd during the AM peak has a queueing deficiency that Project traffic is anticipated to add more than one vehicle length. This is considered a Project related deficiency. This deficiency is identical to the Project related deficiency previously identified under Existing 2021 with Project conditions. An Abatement measure to address this deficiency is provided in Section 810.

To avoid confusion, General Plan deficiencies are labeled as “deficiencies” rather than (CEQA) “impacts”, and the related improvements are labeled as “abatement measures” rather than “mitigation measures”. This is done to emphasize that level-of-service and/or queueing concerns are not considered to be impacts under CEQA.
Figure 18. EPAP 2026 with Project Turning Movements and Lane Geometry
Figure 18. EPAP 2026 with Project Turning Movements and Lane Geometry (Continued)
Table 16. EPAP 2026 Intersection Delay and Level-of-Service, with and without Project

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>Without Project</th>
<th>With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AM (Delay LOS*)</td>
<td>PM (Delay LOS*)</td>
</tr>
<tr>
<td>1. Prairie City Rd/US 50 eastbound ramps</td>
<td>Signal</td>
<td>15.2 B</td>
<td>10.5 B</td>
</tr>
<tr>
<td>2. Prairie City Rd/US 50 westbound ramps</td>
<td>Signal</td>
<td>60.5 E</td>
<td>10.2 B</td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
<td>110.5 F</td>
<td>30.8 C</td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
<td>123.4 F</td>
<td>72.4 E</td>
</tr>
<tr>
<td>5. Iron Point Rd /Grover Rd</td>
<td>Signal</td>
<td>52 D</td>
<td>43.4 D</td>
</tr>
<tr>
<td>6. Iron Point Rd /Oak Avenue Pkwy</td>
<td>Signal</td>
<td>36.8 D</td>
<td>40.4 D</td>
</tr>
<tr>
<td>7. Iron Point Rd /West Kaiser access road</td>
<td>TWSCT**</td>
<td>12.4 B Northbound</td>
<td>13.7 B Northbound</td>
</tr>
<tr>
<td>8. Iron Point Rd /Rowberry Way</td>
<td>Signal</td>
<td>14.4 B</td>
<td>14.3 B</td>
</tr>
<tr>
<td>9. Iron Point Rd /Safe Credit Union access</td>
<td>TWSCT**</td>
<td>16.9 C WB left/U</td>
<td>27 D WB left/U</td>
</tr>
<tr>
<td>10. Iron Point Rd /Broadstone Pkwy</td>
<td>Signal</td>
<td>16.3 B</td>
<td>20.5 C</td>
</tr>
<tr>
<td>11. Iron Point Rd /East Bidwell St</td>
<td>Signal</td>
<td>67.1 E</td>
<td>143.4 F</td>
</tr>
<tr>
<td>12. East Bidwell St/US 50 westbound ramps</td>
<td>Signal</td>
<td>46.9 D</td>
<td>53.5 D</td>
</tr>
<tr>
<td>13. East Bidwell St/US 50 eastbound ramps</td>
<td>Signal</td>
<td>12.9 B</td>
<td>25.4 C</td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSCT**</td>
<td>9.1 A Northbound</td>
<td>8.8 A Northbound</td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSCT**</td>
<td>9.6 A Southbound</td>
<td>9.8 A Southbound</td>
</tr>
</tbody>
</table>

* Level of Service
** Two Way Stop Control: LOS is defined by delay for the worst movement/shared movement, which is listed with the LOS results.
Table 17. EPAP 2026 US 50 Segment Density and Level-of-Service (LOS), with and without Project

<table>
<thead>
<tr>
<th>US 50 Segment</th>
<th>Without Project</th>
<th>With Project</th>
<th>AM (Density LOS*)</th>
<th>AM (Density LOS*)</th>
<th>PM (Density LOS*)</th>
<th>PM (Density LOS*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td></td>
<td>25.9 C</td>
<td>17.8 B</td>
<td>26.0 C</td>
<td>17.9 B</td>
</tr>
<tr>
<td>2. US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td></td>
<td>24.4 C</td>
<td>18.1 B</td>
<td>24.4 C</td>
<td>18.1 B</td>
</tr>
<tr>
<td>3. US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td></td>
<td>25.9 C</td>
<td>21.2 C</td>
<td>25.9 C</td>
<td>21.2 C</td>
</tr>
<tr>
<td>4. US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td></td>
<td>26.9 D</td>
<td>21.2 C</td>
<td>26.9 D</td>
<td>21.2 C</td>
</tr>
<tr>
<td>5. US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. US 50 westbound Oak Avenue diagonal onramp to Prairie City Rd offramp</td>
<td>weave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. US 50 westbound Prairie City offramp</td>
<td>Diverge</td>
<td></td>
<td>33.7 D</td>
<td>28.7 D</td>
<td>33.7 D</td>
<td>28.7 D</td>
</tr>
<tr>
<td>9. US 50 westbound Prairie City loop onramp</td>
<td>Merge</td>
<td></td>
<td>25.5 C</td>
<td>23.4 C</td>
<td>25.5 C</td>
<td>23.4 C</td>
</tr>
<tr>
<td>10. US 50 westbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td></td>
<td>26.0 C</td>
<td>23.2 C</td>
<td>26.1 C</td>
<td>23.3 C</td>
</tr>
<tr>
<td>11. US 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td></td>
<td>30.5 D</td>
<td>33.3 D</td>
<td>30.5 D</td>
<td>33.3 D</td>
</tr>
<tr>
<td>12. US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td></td>
<td>19.6 B</td>
<td>24.1 C</td>
<td>19.6 B</td>
<td>24.1 C</td>
</tr>
<tr>
<td>13. US 50 eastbound Prairie City fly-over onramp</td>
<td>Merge</td>
<td></td>
<td>21.1 C</td>
<td>26.3 C</td>
<td>21.1 C</td>
<td>26.3 C</td>
</tr>
<tr>
<td>14. US 50 eastbound Prairie City fly-over onramp to Oak Ave offramp</td>
<td>weave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. US 50 eastbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. US 50 eastbound Oak Avenue diagonal onramp</td>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. US 50 eastbound Oak Ave to East Bidwell</td>
<td>Basic</td>
<td></td>
<td>18.8 C</td>
<td>24.7 C</td>
<td>18.8 C</td>
<td>24.7 C</td>
</tr>
<tr>
<td>18. US 50 eastbound East Bidwell offramp</td>
<td>Diverge</td>
<td></td>
<td>11.8 B</td>
<td>17.6 B</td>
<td>11.8 B</td>
<td>17.6 B</td>
</tr>
<tr>
<td>19. US 50 eastbound East Bidwell loop onramp</td>
<td>Merge</td>
<td></td>
<td>9.3 A</td>
<td>13.9 B</td>
<td>9.4 A</td>
<td>14.0 B</td>
</tr>
<tr>
<td>20. US 50 eastbound East Bidwell slip onramp</td>
<td>Merge</td>
<td></td>
<td>8.5 A</td>
<td>14.2 B</td>
<td>8.5 A</td>
<td>14.3 B</td>
</tr>
</tbody>
</table>

* Level of Service
6. CUMULATIVE 2026 CONDITION WITH AND WITHOUT PROJECT
This section presents Cumulative Condition traffic.

6.1 Cumulative 2035 Growth Increment
The City of Folsom General Plan travel demand model was used to estimate growth through 2035. The travel demand model was calibrated to the immediate project vicinity by using Base year (2015) and Cumulative year (2035) trip tables, both assigned to the base year model network. The resulting 2015 and 2035 volumes were interpolated to 2021 and compared with the counts to calibrate the model to conditions in the immediate project vicinity. The calibrated model was then applied using the cumulative 2035 trip tables and network to estimate Cumulative condition volumes. The NCHRP 255 adjustment methodology applied\(^\text{11}\) was used to refine forecast turning movements. Supporting material for traffic forecasting calculations are provided in Appendix C.

6.2 Cumulative 2035 Conditions
The Cumulative Conditions analysis accounts for several planned changes to Folsom’s transportation system:

- Addition of a third northbound through lane at intersection #4 (Prairie City Rd/Iron Point Rd);
- Widening ofIron Point Rd to six lanes on all segments between Prairie City Rd and East Bidwell St (effecting intersections 6-9);
- Construction of the Rowberry Way overcrossing of US 50;
- Construction of the Empire Ranch Rd interchange;
- Construction of the Oak Avenue Pkwy interchange; and
- The extension of Alder Creek Pkwy through Oak Avenue Pkwy (along with other Folsom Ranch infrastructure).

Figure 19 summarizes the turning movements and lane configurations for the Cumulative 2035 Conditions scenario. Table 18 and Table 19 present a summary of level-of-service results for the study intersections under EPAP 2026 Conditions. All study intersections and segments are anticipated to operate at an acceptable level-of service. Calculation sheets for intersection delay and level-of-service are provided in Appendix B.

\(^{11}\) The NCHRP 255 approach is an iterative algorithm that uses anticipated traffic growth on each intersections’ approach and departure legs, and observed traffic counts, to estimate future year turning movements.
Figure 19. Cumulative 2035 Condition Turn Movements and Geometry
Attachment 22

Initial Study, Mitigated Negative Declaration, and Mitigation Monitoring and Reporting Program
Dated March, 2022
Folsom Corporate Center Apartments
Initial Study/Mitigated Negative Declaration

Prepared by:
City of Folsom
Community Development Department
50 Natoma Street
Folsom, CA 95630

With technical support from:
HELIX Environmental Planning, Inc.
11 Natoma Street, Suite 155
Folsom, CA 95630

March 2022
TABLE OF CONTENTS

1.0 INTRODUCTION ... 7

2.0 PROJECT BACKGROUND ... 7

3.0 PROJECT DESCRIPTION ... 8
 3.1 Project Location ... 8
 3.2 Project Setting and Surrounding Land Uses ... 8
 3.3 Project Characteristics ... 9
 Parking and Circulation .. 10
 Trash and Recycling Service Access ... 11
 Grading and Drainage .. 11
 Utilities .. 12
 Landscaping .. 13
 Fencing ... 14
 Signage ... 14
 3.4 General Plan Land Use Designation and Zoning.. 14
 General Plan Land Use Designation .. 14
 Zoning Ordinance ... 14
 3.5 City Regulation of Urban Development ... 15
 Other City Regulation of Urban Development .. 15
 Community Development Department Standard Construction Conditions 15
 City of Folsom Municipal Code ... 16

4.0 PROJECT OBJECTIVES ... 17

5.0 REQUIRED APPROVALS .. 17

6.0 PREVIOUS RELEVANT ENVIRONMENTAL ANALYSIS .. 19
 6.1 City of Folsom General Plan ... 19
 6.2 Tiering .. 19
 6.3 Incorporation of the Folsom General Plan by Reference .. 20
 6.4 Summary of Folsom General Plan EIR ... 20

7.0 ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED 21

8.0 DETERMINATION (TO BE COMPLETED BY THE LEAD AGENCY) 22

9.0 ENVIRONMENTAL INITIAL STUDY CHECKLIST .. 23
 I. AESTHETICS ... 24
 II. AGRICULTURE AND FORESTRY RESOURCES .. 26
 III. AIR QUALITY .. 28
LIST OF TABLES

Table 1: Neighboring Land Uses ... 8
Table 2: Summary of Project Features .. 10
Table 3: City of Folsom Municipal Code Regulating Construction and Development 16
Table 4: Sacramento Valley Air Basin Attainment Status .. 29
Table 5: Summary of Annual Air Quality Data for Folsom Area Air Quality Monitoring Stations 31
Table 6: Construction Criteria Pollutants and Precursor Emissions 34
Table 7: Tree Inventory Details ... 50
Table 8: Previously Documented Resources with the Study Area 57
Table 9: Previous Studies Conducted within the Study Area ... 60
Table 10: Global Warming Potential and Atmospheric Lifetimes ... 71
Table 11: City of Folsom Municipal Code Sections Regulating the Effects on Hydrology and Water Quality from Urban Development ... 83
Table 12: Off-site Traffic Noise Levels .. 92
Table 13: Building Exterior Noise Levels ... 94
Table 14: US Highway 50 Study Segments .. 104
Table 15: Study Intersections and Control ... 105
Table 16: Level of Service Criteria for Signalized Intersections ... 106
Table 17: Level of Service Criteria for Unsignalized Intersections 107
Table 18: Level of Service Criteria – Basic Freeway Segments .. 109
Table 19: Level of Service Criteria – Freeway Ramp Merge/Diverge Areas 109
Table 20: Existing 2021 Intersection Delay and LOS ... 111
Table 21: Existing 2021 US Highway 50 Segment Density and LOS 111
Table 22: Project Trip Generation .. 112
Table 23: Existing 2021 Intersection Delay and LOS, with and without Project 113
Table 24: Existing 2021 US Highway 50 Segment Density and LOS, with and without Project . . 113
Table 25: EPAP 2026 Intersection Delay and LOS .. 114
Table 26: EPAP 2026 US 50 Segment Density and LOS .. 115
Table 27: EPAP 2026 Intersection Delay and LOS, with and without Project 116
Table 28: EPAP 2026 US 50 Segment Density and LOS, with and without Project 116
Table 29: Cumulative 2035 Intersection Delay and LOS .. 118
Table 30: Cumulative 2035 US 50 Segment Density and LOS ... 118
Table 31: Cumulative 2035 Intersection Delay and LOS with and without Project 119
Table 32: Cumulative US Highway 50 Segment Density and LOS with and without Project . . 119
Table 33: LOS Summary Cumulative Plus Project Conditions .. 133
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Figures</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Air Quality Modeling Results and Health Risk Assessment</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Biological Resource Database and Records Search Results</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Cultural Resource Evaluation</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Geotechnical Investigation Report</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Water Quality Report</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Noise Technical Reports</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Transportation Impact Study</td>
</tr>
<tr>
<td>Appendix I</td>
<td>AB 52 Consultation Memo</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Mitigation Monitoring and Reporting Program</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This Initial Study addresses the proposed Folsom Corporate Center Apartments (proposed project) and whether it may cause significant effects on the environment. These potential environmental effects are further evaluated to determine whether they were examined in the 2035 City of Folsom General Plan Environmental Impact Report (EIR; City of Folsom 2018) as amended by Code (PRC) §21083.3. This Initial Study focuses on any effects on the environment which are specific to the proposed project and were not analyzed as potentially significant effects in the 2035 City of Folsom General Plan EIR as amended by the EIR for the East Area Facilities Plan, or for which substantial new information shows that identified effects would be more significant than described in the previous EIRs. For additional information regarding the relationship between the proposed project and the previous EIRs, see Section 6.0 of this Initial Study.

The Initial Study is also intended to assess whether any environmental effects of the project are susceptible to substantial reduction or avoidance by the choice of specific revisions in the project, by the imposition of conditions, or by other means [Section 15152(b)(2)] of the California Environmental Quality Act (CEQA) Guidelines. If such revisions, conditions, or other means are identified, they will be identified as mitigation measures.

This Initial Study relies on CEQA Guidelines Sections 15064 and 15064.4 in its determination of the significance of environmental effects. According to Section 15064, the finding as to whether a project may have one or more significant effects shall be based on substantial evidence in the record, and that controversy alone, without substantial evidence of a significant effect, does not trigger the need for an EIR.

2.0 PROJECT BACKGROUND

The following project specific technical reports quantified analysis and or surveys were used in preparation of this Initial Study and are incorporated by reference:

- Air Quality, Greenhouse Gases Analysis, prepared by HELIX (2022)
- Health Risk Assessment, prepared by HELIX (2021)
- Biological Resources Memo, prepared by SCS Engineers (2021)
- Biological Resources Inventory, prepared by HELIX (2021)
- Arborist Report, prepared by Arborwell (2021)
- Tribal Cultural Resource technical memo, prepared by ECORP (2021)
- Cultural Resources Assessment, prepared by HELIX (2021)
- Preliminary Water Quality Report, prepared by RSC Engineering (2021)
- Geotechnical Investigation, Folsom Senior Living Facility, Geocon Consultants (2017)
- Sewer Capacity Analysis, prepared by Water Works Engineers (2021)
3.0 PROJECT DESCRIPTION

3.1 Project Location

The project site consists of two parcels situated in south central City of Folsom in northeastern Sacramento County, California (Figures 1-2 in Appendix A). The first parcel, referred to as Lot 1 (APN: 072-3120-026), is an estimated 7.24-acre parcel located south of Rowberry Drive at a point south of Iron Point Road. The second parcel, referred to as Lot 6 (APN 072-3120-023), is a 4.68-acre parcel located south of Iron Point Road between Broadstone Parkway and Rowberry Drive, approximately 1,400-feet northeast of Lot 1. The street address is currently unnumbered. The project site is located within Section 7, 8, 17 & 18, Township 9 North, Range 8 East (Mount Diablo Base and Meridian, United States Geological Survey 7.5 minute “Folsom Quadrangle”).

3.2 Project Setting and Surrounding Land Uses

The project site is located within the Folsom Corporate Center, a commercial business center containing a combination of commercial office buildings and open space areas. The area in which the project is located is characterized by suburban residential development, commercial business centers, transportation, and open space and undeveloped lots. Neighboring land uses are summarized in Table 1.

<table>
<thead>
<tr>
<th>DIRECTION</th>
<th>LAND USE</th>
</tr>
</thead>
</table>
| North | Lot 1: Office buildings, oak woodland, and medical offices
Lot 6: Iron Point Road, residential development north of Iron Point Road |
| East | Lot 1: vacant land
Lot 6: constructed ponds/wetland, office buildings |
| South | Lot 1: US Highway 50, vacant land
Lot 6: office buildings, US Highway 50, undeveloped land containing scattered oaks |
| West | Lot 1: commercial buildings, memory care facility, and undeveloped land
Lot 6: office buildings, stand of oaks |

Lot 1 is largely undeveloped, and is bordered by office buildings, oak woodland, and medical offices to the north, vacant land to the east, US Highway 50 and vacant land to the south, and commercial buildings, a memory care facility, an active-adult apartment community, and undeveloped land to the west. The parcel slopes from east to west with elevations ranging from 371 feet above mean sea level (amsl) in the eastern portion of the parcel to 317 feet amsl in the western portion of the parcel. The parcel is raised above the adjacent properties to the north and south. Several electrical transmission and telecommunications easements cross through the western portion of the parcel within an approximately 377.5-foot-wide restricted building and use area. Overhead transmission lines and utility poles occur on the parcel within the easements. A small area of the northwestern portion of the parcel is developed with parking, landscaping, and a walkway associated with the existing adjacent medical offices, located north and northeast of the parcel. A 50-foot landscape easement lines the southern parcel boundary. An existing US Highway 50 right-of-way fence is located along the southern parcel boundary. Additionally, one existing oak tree is located in the southeastern corner of the parcel.
Lot 6 is largely undeveloped and is bordered by Iron Point Road and residential development to the north, a constructed pond/wetland and office buildings to the east, office buildings and undeveloped land containing scattered oaks to the south, and office buildings to the west. An unnamed road borders the parcel along its eastern and southern boundaries. The parcel slopes from west to east, with elevation ranging from 370-feet amsl in the western portion of the site to 358-feet amsl in the eastern portion of the site. The parcel is elevated above the surrounding properties. An existing sidewalk with a curb and gutter, and an existing retaining wall, are located in a 20-foot-wide public utility, landscape, and pedestrian easement that lines the northern parcel boundary along Iron Point Road. The parcel frontage with the unnamed roadway is landscaped within an existing 20-foot-wide access easement. Additional areas of the parcel are undeveloped and sparsely vegetated. A group of oak trees are located in the southwestern portion of the parcel. Seven oak trees are proposed to be removed, and two oak trees would remain and become incorporated into the landscape design.

3.3 Project Characteristics

The proposed project includes the construction of a new multi-family apartment community on two separate parcels (referred to as Lot 1 and Lot 6) within the Folsom Corporate Center. The apartment community in total would consist of 253 apartment units, two clubhouses, 491 parking spaces, and indoor and outdoor amenities unique to each parcel. On-site parking would include garage parking spaces, carport covered parking spaces, and uncovered parking spaces. The units would be available as one-, two-, or three-bedroom apartments, and would range from 690-square feet (sf) to 1,325-sf. The proposed project would require a General Plan Amendment, Rezone, Planned Development Permit, Design Review, and Tree Removal Permit.

Lot 1 is a 7.24-acre parcel and would develop seven, 3-story apartment buildings with a total of 153 units (Figure 3 in Appendix A). The site would have 304 parking spaces provided as carports and uncovered spaces throughout the parcel. The parcel would include an approximately 6,700-sf, 3-story clubhouse with a pool located in the southeastern portion of the parcel. Additional amenities would include a dog park in the southwest portion of the parcel, fire pit with seating and a picnic area located near the center of the parcel, and a landscaped seating area near the main entrance at the northeastern portion of the parcel. Bicycle parking would be in an enclosed structure adjacent to the clubhouse. The existing oak tree in the southeast corner of the parcel would remain.

Lot 6 is a 4.86-acre parcel and would develop five, 3-story apartment buildings with a total of 100 units (Figure 4 in Appendix A). The site would have 187 parking spaces provided as carports and uncovered spaces throughout the parcel. The parcel would include an approximately 3,200-sf, one story clubhouse with a pool and amenity area located in southwestern portion of the parcel, east of the main entrance driveway. Additional amenities would include proposed seating areas, picnic areas, a fire pit, and a dog park in the southwestern portion of the parcel. Bicycle parking would be located in a dedicated room in the clubhouse. A group of oak trees are located in the southwestern corner of the parcel. Seven of the trees on the parcel are proposed to be removed, while the remaining two would remain and be incorporated into the landscape design.

Additional proposed improvements include drive aisles, curbs, gutters, sidewalks, internal walkways, underground utilities, retaining walls, site lighting, site landscaping, and monument signs. Building materials would consist of stucco, fiber cement siding and stone veneer. The height of each building would be approximately 38 feet with a parapet roof system to blend with the commercial buildings and
to screen the mechanical equipment (HVAC) on the roof. The project features are summarized in Table 2 and are described in detail in the following paragraphs.

Table 2. Summary of Project Features

<table>
<thead>
<tr>
<th>PROJECT FEATURE</th>
<th>UNITS/ PARKING SPACES</th>
<th>SITE COVERAGE (square feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total residential building units</td>
<td>153 units</td>
<td></td>
</tr>
<tr>
<td>Clubhouse</td>
<td></td>
<td>6,782</td>
</tr>
<tr>
<td>Total parking spaces/paved areas</td>
<td>304 spaces</td>
<td>98,849</td>
</tr>
<tr>
<td>Landscaping/Shaded Area</td>
<td></td>
<td>34,945</td>
</tr>
<tr>
<td>Subtotal Lot 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total residential building units</td>
<td>100 units</td>
<td></td>
</tr>
<tr>
<td>Clubhouse</td>
<td></td>
<td>3,098</td>
</tr>
<tr>
<td>Total parking spaces/paved areas</td>
<td>187 spaces</td>
<td>67,868</td>
</tr>
<tr>
<td>Landscaping/Shaded Area</td>
<td></td>
<td>34,186</td>
</tr>
<tr>
<td>Subtotal Lot 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total project</td>
<td>253 units/491 parking spaces</td>
<td></td>
</tr>
</tbody>
</table>

Parking and Circulation

Parking proposed on both Lot 1 and Lot 6 currently meet the Zoning Ordinance requirement of 1.5 stalls per unit. Under the current multi-family guidelines, Lot 1 exceeds the Folsom Design guidelines by providing 304 parking spaces (1.99 ratio); inclusive of 74 garaged spaces and 79 covered stalls. Lot 6 also meets the guidelines with 187 spaces (1.87 ratio); inclusive of 46 garaged spaces and 54 covered stalls. The overall parking ration of Lots 1 and 6 together exceed the City’s current multi-family guidelines with a parking ratio of 1.94.

Car Parking and Circulation

Lot 1

Lot 1 would have one gated main access driveway with two gated emergency vehicle access driveways. The main gated entrance would be located on the northern parcel boundary and would connect to Rowberry Drive. Additionally, a gated emergency vehicle access driveway entrance would be located approximately 640-feet west of the main entrance and would connect to the existing parking associated with the medical office north of the parcel. A secondary gated, emergency vehicle access driveway would connect to Rowberry Drive at a point 640-feet east of the main driveway. On-site circulation would consist of a circular driveway that would connect directly with the main public entrance driveway on the northern parcel boundary. Lot 1 includes sidewalk pedestrian connections to the Kaiser outer parking lot to the north of the parcel, and to the planned dialysis clinic to the east of the parcel. The two emergency vehicle access driveways would connect with the main on-site circulation driveway that would provide access to the proposed buildings and clubhouse located in the southeastern portion of the parcel.
A 6-foot height metal pedestrian gate would be located next to each entrance, the main access driveway, and the two emergency access driveways. Pedestrian circulation would consist of sidewalks throughout the parcel, and crosswalks providing pedestrian access to the apartment units, clubhouse and pool, and the main and emergency entrances.

Lot 6

Lot 6 would be accessed by one main access driveway and one emergency vehicle access driveway. The gated main entrance would be located on the southern parcel boundary and would connect to the unnamed road that borders the parcel to the south and east. A gated emergency vehicle access driveway would be located 170-feet east of the main access driveway and would connect to the unnamed road that borders the parcel to the south and east. On-site circulation would consist of a circular driveway that provides access to the proposed buildings and clubhouse, the amenities, the emergency access driveway, and the main entrance/exit driveway.

One 6-foot metal pedestrian gate would be located next to each entrance, the main entrance driveway, and the emergency access driveway. Pedestrian circulation would consist of sidewalks throughout the parcel, and crosswalks providing pedestrian access to the apartment units, clubhouse and pool, and the main and emergency entrances.

Bicycle Parking

The proposed project would provide bicycle parking spaces throughout Lot 1 and Lot 6 that would exceed City and Title 24 requirements. Lot 1 bicycle parking would be in an enclosed structure adjacent to the main clubhouse. Lot 6 would include bicycle parking within a dedicated room in the clubhouse. By exceeding the bicycle parking standards, the intent is to help offset the need for motorized vehicles. In addition, the proposed project plans to provide some community-owned bicycles for use by residents between Lot 1 and Lot 6, or for easier access to nearby amenities such as the wetland and oak preserves, Folsom Gateway, or the shops at the Palladio. Of note, Lot 6 is located less than 0.25-mile from Folsom Gateway and 0.6-mile from Palladio, and Lot 1 is located approximately 0.5-mile from Folsom Gateway and 0.9-mile from Palladio.

Trash and Recycling Service Access

For Lot 1, the trash compactor would be serviced by entering through the emergency vehicle access and exiting the main access point. Recycling would enter and exit through the main access driveway. For Lot 6, trash and recycling would use the main access to enter and exit.

Grading and Drainage

Lot 1

Nearly the entire parcel of Lot 1 would be disturbed during site preparation and grading. Lot 1 would be terraced to the extent possible to account for significant existing elevation change from the eastern to western boundaries. Due to the topography of the parcel and surrounding areas, retaining walls would be installed along portions of the southern and eastern parcel boundaries, as well as along the northwestern parcel boundary. An existing oak tree in the southeastern portion of the parcel would remain.
Stormwater generated in Lot 1 would be collected by storm drain inlets throughout the parcel. The parcel would contain multiple drainage management areas that would manage the stormwater with bioretention facilities and/or Contech stormfilter units as necessary for compliance with the City of Folsom standards.

Lot 6

A majority of Lot 6 would be disturbed during site preparation and grading. An existing retaining wall along the northern boundary of the parcel would remain. Due to the topography of the parcel, a retaining wall would be installed along portions of the northern and eastern parcel boundaries, and a rockery wall would be installed along the western parcel boundary. The existing grade in the southwestern corner of the parcel would be maintained, to preserve the existing oak trees beyond the parcel boundary. Seven oak trees located within the parcel boundary would be removed, and two oak trees would remain and would be incorporated into landscaping.

Stormwater generated in Lot 6 would be collected by several storm drain inlets, gutter flowlines and sidewalk underdrains throughout the parcel. The parcel would contain multiple drainage management areas that would manage the stormwater through the use of disconnected roof drains, bioretention facilities and/or Contech stormfilter units as necessary for compliance with the City of Folsom standards.

Utilities

Lot 1

Both lots contain utility stubs for water and sewer, which would tie into existing water and sewer lines that were provided when the previous phase of the Folsom Corporate Center development project were completed. Multiple existing storm drain stubs located on the northern portion of the site will be used to connect the proposed storm drain system. Proposed water line stubs would connect to existing water service stubs located east of the parcel and on the eastern boundary line. Additionally, proposed sewer line stubs would connect to an existing sewer line with a new manhole provided by a parcel located just north. Stormwater planters and Contech Stormfilter Units are proposed on the project site to address the stormwater quality requirement of the City. Additionally, dry utilities (electric, gas, telephone, and cable TV) would be provided. An easement would be provided and centered over their facilities. An existing 12.5-foot public utility easement is located along Iron Point Road. Proposed fire service lines as well as proposed fire hydrants are located throughout the parcel. Each junction of the utility stubs would be covered by an existing or proposed manhole.

Lot 6

Both lots contain utility stubs for water and sewer, which would tie into existing water and sewer lines that were provided when the previous phase of the Folsom Corporate Center development project were completed. An existing storm drain stub would connect to the proposed site storm drain system. Proposed water lines would connect to an existing domestic water service stub located in the northeastern corner of the parcel. Additionally, proposed sewer line stubs would connect to existing sewer lines stubs located in the eastern portion of the parcel. Stormwater planters, Contech Stormfilter Units, and Disconnected Roof Drains are proposed on the project site to address the stormwater quality requirements of the City. Additionally, dry utilities (electric, gas, telephone, and cable TV) would be provided. An easement would be provided and centered over their facilities. An existing 12.5-foot public
utility easement is located along Iron Point Road. Proposed fire service lines would connect to existing fire lane stubs and fire hydrants are proposed throughout the parcel. Each junction of the utility stubs would be covered by an existing or proposed manhole.

Lighting

Lighting on Lot 1 and Lot 6 would be comprised of 12 and 18-foot-tall light poles with a dark bronze finish in the parking lot that have photo-controlled shut-off, with auto-schedule and motion sensors along with down lighting at 8-feet under the car ports. There would also be building wall sconces at 8-feet above finished floor. All lighting would be designed to minimize light/glare impacts to the adjacent properties by ensuring that all exterior lighting and pole-mounted parking lot and driveway lighting be shielded and directed downward. Light-emitting diode luminaires would be used for all of the proposed outdoor lighting.

Landscaping

Lot 1

The project applicant proposed a landscaping plan for Lot 1 that included a variety of new and existing trees, shrubs, and groundcover. Seasonal accented trees and shrubs would be planted the main entrance to Lot 1, and the parking areas would be populated with a canopy of trees and an understory of low shrubs and groundcovers. The proposed project is requesting a deviation from the 50 percent shade requirement on Lot 1 due to the restrictions associated with the power line easements that prohibit full size shade trees. Small trees that meet the standards within the easements have been clustered within these planters to maximize shade patterns. Evergreen shrub clusters would be planted along the eastern and southern parcel boundaries to screen adjacent properties. Purple crape myrtle would line the parking lot in the western portion of Lot 1. Red oak trees would line the southern and eastern parcel boundaries, and several Chinese pistache trees would provide additional cover along walkways between the apartment complexes. An existing oak tree in the southeastern corner of the parcel would remain. Masonry walls would be constructed to provide privacy for the fire pit and picnic area, which are situated between two apartment buildings in the center of the parcel, and for the seating area, which is located adjacent to the main entrance in the northeast portion of the parcel.

Lot 6

The project applicant proposed a landscaping plan for Lot 6 that includes a variety of new and existing trees, shrubs, and groundcover. The main entrance to Lot 6 would be defined by seasonal accented trees and shrubs. Chinese pistache trees would provide a canopy of shade in conjunction with the parking area. Understory planting within the parking lot would consist of low shrubs and groundcover. Lacebark elms would line the bioretention filter in the southeast corner of the parcel, and along the additional carports in the northwest corner of the parcel. Red oak trees would line the northern boundary of the Lot. The planting and irrigation would be designed to meet the Model Water Efficient Landscape Ordinance requirements by utilizing low water use plant material and a high efficiency irrigation system. Seven oak trees in the southwest corner of the project site would be removed, while two oak trees would be incorporated into the landscape design. Masonry walls would be constructed to provide privacy for the fire pit and picnic area, adjacent to the pool area in the southwestern corner, and for the seating area, adjacent to the main entrance in the southern portion of the parcel.
Fencing

A 6-foot height metal fence would be installed along the northeastern, eastern, southern, and western boundaries of Lot 1. A 6-foot height metal fence would be installed along the eastern, southern, and western boundary of Lot 6.

Signage

Project signage would be installed on masonry walls at the main entrance driveway of Lot 1 and Lot 6. In addition, directional signage would be provided on each parcel.

3.4 General Plan Land Use Designation and Zoning

The City of Folsom updated their General Plan 2035 in August 2018. The General Plan is a long-term planning document that guides growth and land development in the City. It provides the foundation for establishing community goals and supporting policies, and directs appropriate land uses for all land parcels within the City.

General Plan Land Use Designation

The General Plan is a long-term planning document that guides growth and land development in the City. It provides the foundation for establishing community goals and supporting policies, and directs appropriate land uses for all land parcels within the City. Under the current General Plan, both project parcels have a land use designation of Industrial/Office Park (IND). However, the proposed project would require a General Plan Amendment from IND to multi-family high density residential (MHD) for both Lot 1 and Lot 6. The MHD designation provides for multifamily residential units in apartment buildings. The proposed multi-family apartment complex and related amenities on Lot 1 and Lot 6 are identified as permitted uses under the MHD designation in the General Plan.

Zoning Ordinance

Developed land uses in the City of Folsom are regulated specifically by the City’s Zoning Code (Title 17 of the City’s Municipal Code), in addition to the other adopted regulations and programs that apply to all proposed development within the City. In more detail than the General Plan, the Zoning Code regulates land uses on a parcel-by-parcel basis throughout the City. To achieve this regulation, the City assigns each parcel within the City to a zoning district, such as a district for single-family homes. Regulations for each district apply equally to all properties within the district.

Current zoning for Lot 1 is Limited Manufacturing, Planned Development District (M-L PD), and current zoning for Lot 6 is Business and Professional, Planned Development District (B-P PD). The proposed project would require a rezone at Lot 1 from M-L PD to R-4 PD, and a rezone at Lot 6 from B-P PD to R-4 PD. The Planned Development combining zone would remain.

Chapter 17.17 of the Zoning Code outlines use standards for Multi-Family High Density (MHD). The purpose of the MHD zone is to designate areas where group dwellings and apartments are a logical and desirable use. This designation allows for multi-family residential units with 20 to 30 dwelling units per acre.
3.5 City Regulation of Urban Development

Other City Regulation of Urban Development

The City of Folsom further regulates urban development through standard construction conditions and through mitigation, building, and construction requirements set forth in the Folsom Municipal Code. Required of all projects constructed throughout the City, compliance with the requirements of the City's standard conditions and the provision of the Municipal Code avoids or reduces many potential environmental effects. City procedures to minimize negative environmental effects and disruptions include an analysis of existing features, responsible agency and public input to the design process, engineering and design standards, and construction controls. The activities that mitigate typical environmental impacts to be implemented by the City during the project review, design, and construction phases are described in greater detail below.

Community Development Department Standard Construction Conditions

The City’s standard construction requirements are set forth in the City of Folsom, Community Development Standard Construction Specifications updated in May 2020. A summary of these requirements is set forth below and incorporated by reference into the project description. Copies of these documents may be reviewed at the City of Folsom, Community Development Department, 50 East Natoma Street, Folsom, California 95630.

The Department's standard construction specifications are required to be adhered to by any contractor constructing a public or private project within the City.

Use of Pesticides – Requires contractors to store, use, and apply a wide range of chemicals consistent with all local, state, and federal rules and regulations.

Air Pollution Control – Requires compliance with all City of Folsom and County of Sacramento air pollution regulations.

Water Pollution – Requires compliance with City water pollution regulations, including National Pollutant Discharge Elimination System (NPDES) provisions.

Noise Control – Requires that all construction work comply with the Folsom Noise Ordinance (discussed further below), and that all construction vehicles be equipped with a muffler to control sound levels. The Contractor shall comply with all local sound control and noise level rules, regulations and ordinances which apply to any work performed pursuant to the Contract Documents.

Naturally Occurring Asbestos – All work involved asbestos containing material must be performed in accordance with California Labor Code, sections 6501.5 through 6510, inclusive, and California Administrative Code, Title 8, Section 5208 and all other pertinent laws, rules, regulations, codes, ordinances, decrees and orders.

Weekend, Holiday, and Night Work – Prohibits construction work during evening hours, or on Sunday or holidays, to reduce noise and other construction nuisance effects.
Public Convenience – Regulates traffic through the work area, operations of existing traffic signals, roadway cuts for pipelines and cable installation, effects to adjacent property owners, and notification of adjacent property owners and businesses.

Public Safety and Traffic Control – Regulates signage and other traffic safety devices through work zones.

Existing Utilities – Regulates the relocation and protection of utilities.

Preservation of Property – Requires preservation of trees and shrubbery and prohibits adverse effects to adjacent property and fixtures.

Cultural Resources – Requires that contractors stop work upon the discovery of unknown cultural or historic resources, and that an archaeologist be retained to evaluate the significance of the resource and to establish mitigation requirements, if necessary.

Protection of Existing Trees – Specifies measures necessary to protect both ornamental and native oak trees.

Clearing and Grubbing – Specifies protection standards for signs, mailboxes, underground structures, drainage facilities, sprinklers and lights, trees and shrubbery, and fencing. Also requires the preparation of a Stormwater Pollution Prevention Plan (SWPPP) to control erosion and siltation of receiving waters.

Reseeding – Specifies seed mixes and methods for reseeding of graded areas.

City of Folsom Municipal Code

The City regulates many aspects of construction and development through requirements and ordinances established in the Folsom Municipal Code. These requirements are summarized in Table 3, and hereby incorporated by reference into the Project Description as though fully set forth herein. Copies of these documents may be reviewed at the City of Folsom, Office of the City Clerk, 50 Natoma Street, Folsom, California 95630.

Table 3. City of Folsom Municipal Code Regulating Construction and Development

<table>
<thead>
<tr>
<th>CODE SECTION</th>
<th>CODE NAME</th>
<th>EFFECT OF CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.42</td>
<td>Noise Control</td>
<td>Establishes interior and exterior noise standards that may not be exceeded within structures, including residences; establishes time periods for construction operations.</td>
</tr>
<tr>
<td>8.70</td>
<td>Stormwater Management and Discharge Control</td>
<td>Establishes conditions and requirements for the discharge of urban pollutants and sediments to the storm-drainage system; requires preparation and implementation of Stormwater Pollution Prevention Plans.</td>
</tr>
<tr>
<td>9.34</td>
<td>Hazardous Materials Disclosure</td>
<td>Defines hazardous materials; requires filing of a Hazardous Material Disclosure Form by businesses that manufacture, use, or store such materials.</td>
</tr>
<tr>
<td>9.35</td>
<td>Underground Storage of Hazardous Substances</td>
<td>Establishes standards for the construction and monitoring of facilities used for the underground storage of hazardous materials.</td>
</tr>
</tbody>
</table>
4.0 PROJECT OBJECTIVES

The objective of the proposed project is to develop a high-quality planned residential development on two currently vacant infill sites in the City of Folsom. The objective of providing the residential development must be achieved while minimizing environmental impacts to the maximum extent practicable and while meeting the requirements of the General Plan, as amended.

5.0 REQUIRED APPROVALS

A listing and brief description of the regulatory permits and approvals required to implement the proposed project is provided below. This environmental document is intended to address the environmental impacts associated with all the following decision actions and approvals:

- **Planned Development Permit**: Because the proposed project would be sited within a Planned Development overlay zoning designation, the project requires a Planned Development Permit. This designation requires review by the Planning Commission from design review purposes.
• **General Plan Amendment:** Because the proposed project would include the construction of a multi-family unit apartment community, the project requires a General Plan Amendment to change the existing land use designation from Industrial (IND) to Multi-family High Density (MHD).

• **Rezone Permit:** Currently, Lot 1 is zoned for Limited Manufacturing Planned Development (M-L, PD) and Lot 6 is zoned for Business and Professional Planned Development (BP, PD). Because the proposed project would include the construction of a multi-family unit apartment community on both lots, a rezone is required to change both zones to General Apartment, Planned Development District (R-4 PD).

• **Design Review:** The proposed project of Lot 1 and Lot 6 would bring new construction to these vacant parcels. Therefore, the proposed construction of Lot 1 and Lot 6 will be subject to design review.

• **Tree Removal Permit:** The proposed project requests a tree permit to remove five trees of Lot 6. Per the Amended Arborist Report by Arborwell, one additional tree is recommended for removal due to its poor condition.

The City has the following discretionary powers related to the proposed project:

• **Certification of the environmental document:** The City Council will act as the lead agency as defined by the California Environmental Quality Act (CEQA) and will have authority to determine if the environmental document is adequate under CEQA.

• **Approval of project:** The City Council will consider approval of the project and all entitlements as described above.

California Department of Fish and Wildlife consultation would be required if active nests are found for species protected by the Migratory Bird Treaty Act, as applicable.
6.0 PREVIOUS RELEVANT ENVIRONMENTAL ANALYSIS

6.1 City of Folsom General Plan

The City of Folsom General Plan provides a framework for the long-range development of Folsom. This General Plan also covers what was previously described in the East Area Facilities Plan. The General Plan guides policy decision-making about land use, transportation improvements, public services, economic development housing, and other issues. The EIR for the 2035 City of Folsom General Plan updated and revised the environmental conclusions of the 1988 General Plan EIR, expanding analysis to include development in unincorporated areas around the City and five additional chapters on matters of local interest (City of Folsom 2018). The EIR for the 2035 General Plan provides the foundation environmental document for evaluating development throughout this part of the City.

6.2 Tiering

"Tiering" refers to the relationship between a program-level EIR (where long-range programmatic cumulative impacts are the focus of the environmental analysis) and subsequent environmental analyses such as the subject document, which focus primarily on issues unique to a smaller project within the larger program or plan. Through tiering a subsequent environmental analysis can incorporate, by reference, discussion that summarizes general environmental data found in the program EIR that establishes cumulative impacts and mitigation measures, the planning context, and/or the regulatory background. These broad-based issues need not be reevaluated subsequently, having been previously identified and evaluated at the program stage.

Tiering focuses the environmental review on the project-specific significant effects that were not examined in the prior environmental review, or that are susceptible to substantial reduction or avoidance by specific revisions in the project, by the imposition of conditions or by other means. Section 21093(b) of the Public Resources Code requires the tiering of environmental review whenever feasible, as determined by the Lead Agency.

In the case of the proposed project, this Initial Study tiers from the EIR for the City of Folsom General Plan as amended by approval of the East Area Facilities Plan. The Folsom General Plan, as amended, is a project that is related to the proposed project and, pursuant to §15152(a) of the CEQA Guidelines, tiering of environmental documents is appropriate. CEQA Guidelines §15152(e) specifically provides that:

"[w]hen tiering is used, the later EIRs or Negative Declarations shall refer to the prior EIR and state where a copy of the prior EIR may be examined. The later [environmental document] should state that the Lead Agency is using the tiering concept and that the [environmental document] is being tiered with the earlier EIR."

The above mentioned EIRs can be reviewed at the following location:

City of Folsom
Community Development Department
50 Natoma Street
Folsom, CA 95630
6.3 **Incorporation of the Folsom General Plan by Reference**

Due to various references to the Folsom General Plan EIR in this proposed project, and to its importance relative to understanding the environmental analysis that has occurred to date with respect to development in the Folsom area, the Folsom General Plan EIR is hereby incorporated by reference pursuant to CEQA Guidelines Section 15150.

6.4 **Summary of Folsom General Plan EIR**

The Folsom General Plan EIR analyzed the environmental impacts associated with adoption of the City of Folsom General Plan allowing for development, open space preservation, and provision of services land in and adjacent to the City of Folsom.

The Draft Program Environmental Impact Report for the Folsom General Plan identified 453 vacant parcels north of Highway 50 as an area of future development. The Folsom General Plan contemplates the full range of land uses that would constitute a balanced community, including residential uses at a variety of densities, as well as commercial, office, employment, and open space uses. Additionally, public or quasi-public uses are contemplated by the Folsom General Plan, including schools, parks, fire stations, government offices, and other uses.
7.0 ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

The environmental factors checked below would be potentially affected by this project, involving at least one impact that may require mitigation to reduce the impact from “Potential Impact” to “Less than Significant” as indicated by the checklist on the following pages.

An Initial Study is conducted by a Lead Agency to determine if a project may have a potentially significant effect on the environment (CEQA Guidelines Section 15063). An EIR must be prepared if an Initial Study indicates that further analysis is needed to determine whether a significant impact will occur or if there is substantial evidence in the record that a project may have a significant effect on the environment (CEQA Guidelines Section 15064(f)).

☐ Aesthetics	☐ Agriculture/Forestry Resources	☑ Air Quality
☑ Biological Resources	☑ Cultural Resources	☐ Geology/Soils
☑ Greenhouse Gas Emissions	☐ Hazards/Hazardous Materials	☑ Hydrology/Water Quality
☐ Land Use/Planning	☐ Mineral Resources	☑ Noise
☐ Population/Housing	☐ Public Services	☐ Recreation
☑ Transportation/Traffic	☑ Tribal Cultural Resources	☑ Utilities/Service Systems
☐ Mandatory Findings of Significance		

City of Folsom 21 March 2022
8.0 **DETERMINATION**

On the basis of this initial evaluation:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.</td>
</tr>
<tr>
<td>■</td>
<td>I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.</td>
</tr>
<tr>
<td>☐</td>
<td>I find that the proposed project MAY have a significant effect on the environment, and an environmental impact report is required.</td>
</tr>
<tr>
<td>☐</td>
<td>I find that the proposed project MAY have a “potential impact” or “potentially significant unless mitigated” impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.</td>
</tr>
<tr>
<td>☐</td>
<td>I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.</td>
</tr>
</tbody>
</table>

Signature: [Signature]

Date: 3/4/22

Printed Name: Steven Parks

Title: Principal Planner
9.0 ENVIRONMENTAL INITIAL STUDY CHECKLIST

Responses to the following questions and related discussion indicate if the proposed project will have or will potentially have a significant adverse impact on the environment, either individually or cumulatively with other projects. All phases of project planning, implementation, and operation are considered. Mandatory Findings of Significance are addressed in Section 9.19 below.

A. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.

B. "Less Than Significant With Mitigation" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures and briefly explain how they reduce the effect to a less than significant level (mitigation measures from earlier analyses may be cross-referenced).

C. "Less Than Significant Impact" applies where the project creates no significant impacts, only less than significant impacts.

D. "No Impact" applies where a project does not create an impact in that category. "No Impact" answers do not require an explanation if they are adequately supported by the information sources cited by the lead agency which show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project would not expose sensitive receptors to pollutants, based on a project specific screening analysis).
I. AESTHETICS

<table>
<thead>
<tr>
<th>AESTHETICS: Would the project:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista?</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>■</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>■</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>○</td>
<td>○</td>
<td>■</td>
<td>○</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?</td>
<td>○</td>
<td>○</td>
<td>■</td>
<td>○</td>
</tr>
</tbody>
</table>

Environmental Setting

Lot 1 is currently undeveloped, and is bordered by oak woodlands and the Kaiser medical clinic to the north, planned dialysis clinic to the east, and US Highway 50 to the south. The site is constrained by high tension powerlines on its west side, and commercial buildings, a memory care facility, and a vacant lot containing oak woodland to the west. Lot 1 has one existing oak tree in the southeastern corner of the parcel.

Lot 6 is currently undeveloped and is bordered by Iron Point Road to the north, a constructed pond/wetland and office buildings to the east, an office building and undeveloped land containing scattered oaks to the south, and an office building to the west. A strand of oak trees within a designated preserve separates Lot 6 from the existing office building to the west.

Evaluation of Aesthetics

Question a: No Impact. A scenic vista is defined as a viewpoint that provides expansive view of a highly valued landscape for the benefit of the public. Neither the project site nor the surrounding areas are considered to be scenic vistas due to the existing development and suburban environment typical of the area. Further, neither the project site, nor views to or from the project site, have been designated as an important scenic resource by the City of Folsom or any other public agency (Folsom 2018). Therefore, construction or operation of the proposed development would not interfere with or degrade a scenic vista. No impacts would occur, and no mitigation would be necessary.

Question b: No Impact. There are no state or locally designated scenic highways in the vicinity of the proposed project (CalTrans 2021, Folsom 2018). Implementation of the proposed project would not adversely affect scenic resources within a designated scenic highway. Although the project is bordered by US Highway 50 to the south, it is not considered a scenic highway. Therefore, no impact would occur, and no mitigation would be necessary.

Question c: Less than Significant Impact. The existing visual character of the area surrounding the project site is characteristic of suburban development and is primarily defined by commercial, business
offices, residential, and transportation land uses. Development of an apartment complex on Lot 1 and Lot 6 would be consistent with the surrounding suburban land uses and development. The project site would be visible by motorists and pedestrians travelling along Iron Point Road, and by motorists travelling along US Highway 50. Implementation of the project would result in the development of high-density residential structures on undeveloped land, surrounded by commercial, residential, and residential uses.

While the proposed project would inevitably result in a change in visual character on the vacant site, the proposed land uses are consistent with the overall suburban development in the vicinity, and the proposed developments are expected to integrate into the existing and planned development within the area. Therefore, a less than significant impact to visual character would occur and no mitigation is necessary.

Question d: Less than Significant Impact. Any new lighting associated with development of the project site would be subject to the City's standard practices regarding night lighting that would be made a condition of approval of the Planned Development Permit. Consistent with the City's practices, the lighting would be sited and designed to avoid light spillage and glare on adjacent properties, with photo-controlled shut-off, and auto-schedule and motion sensors. All lighting would be designed to minimize light/glare impacts to the adjacent properties by ensuring that all exterior lighting and pole-mounted parking lot and driveway lighting be shielded and directed downward. Light-emitting diode luminaires would be used for all of the proposed outdoor lighting. Because existing City practices would limit light spillover and intensity, this would be a less than significant impact, and no mitigation is necessary.
II. Agriculture and Forestry Resources

<table>
<thead>
<tr>
<th>AGRICULTURE AND FORESTRY RESOURCES:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>●</td>
</tr>
<tr>
<td>b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>●</td>
</tr>
<tr>
<td>c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>●</td>
</tr>
<tr>
<td>d) Result in the loss of forest land or conversion of forest land to non-forest use?</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>●</td>
</tr>
<tr>
<td>e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?</td>
<td>◯</td>
<td>◯</td>
<td>●</td>
<td>◯</td>
</tr>
</tbody>
</table>

Environmental Setting

No agricultural activities or timber management occur on the project site or in adjacent areas and the site is not designated for agricultural or timberland uses. The California Important Farmlands Map prepared for Sacramento County by the California Department of Conservation classifies Lot 1 as grazing land surrounded by urban and built up and Lot 6 as other land (California Department of Conservation [CDC] 2018a). Urban and built-up land is land occupied by structures or infrastructure to accommodate a building density of at least one unit to one and one-half acres, or approximately six structures to 10-acres; grazing land is land on which vegetation is suited to the grazing of livestock; and other land is land not included in any other mapping category – typically vacant and nonagricultural lands (CDC 2018a).

Evaluation of Agriculture and Forestry Resources

Question a, b: No Impact. The project site is not considered Prime Farmland, Unique Farmland, or Farmland of Statewide importance (Farmland), pursuant to the Farmland Mapping and Monitoring Program of the California Department of Conservation (CDC 2018a). The project site is not zoned for
agricultural use or enacted into a Williamson Act contract. No impacts would occur, and no mitigation would be necessary for questions a) and b).

Question c, d: No Impact. Because no portion of the City or the project site are zoned for forest land, timberland, or zoned Timberland Production, no impact would occur, and no mitigation would be necessary for questions c) and d).

Question e: Less Than Significant Impact. Lot 1 has been identified as grazing land surrounded by urban and built-up land. This area is considered to be highly disturbed with marginal grazing opportunities due to its proximity to a main road and surrounding urban development. Because no important agricultural resources or activities exist on the project site, impacts would be less than significant, and no mitigation would be necessary.
III. AIR QUALITY

AIR QUALITY:
Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Conflict with or obstruct implementation of the applicable air quality plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Expose sensitive receptors to substantial pollutant concentrations?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Create objectionable odors affecting a substantial number of people?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

HELIX Environmental Planning, Inc. conducted air quality modeling (CalEEMod) for the proposed project based primarily on the preliminary site plan and the Transportation Impact Study conducted by T. Kear Transportation Planning and Management, Inc. (2021). Additionally, due to the proposed project’s proximity to US Highway 50 a Health Risk Assessment was performed. Air quality modeling output files and quantitative results are presented in Appendix B.

Environmental Setting

Climate in the Folsom area is characterized by hot, dry summers and cool, rainy winters. During summer’s longer daylight hours, plentiful sunshine provides the energy needed to fuel photochemical reactions between Oxides of Nitrogen (NOx) and Reactive Organic Gasses (ROG), which result in Ozone (O3) formation. High concentrations of O3 are reached in the Folsom area due to intense heat, strong and low morning inversions, greatly restricted vertical mixing during the day, and daytime subsidence that strengthens the inversion layer. The greatest pollution problem in the Folsom area is from NOx.

The City of Folsom lies within the eastern edge of the Sacramento Valley Air Basin (SVAB). The Sacramento Metropolitan Air Quality Management District (SMAQMD) is responsible for implementing emissions standards and other requirements of federal and state laws in the project area. As required by the California Clean Air Act (CCAA), SMAQMD has published various air quality planning documents as discussed below to address requirements to bring the District into compliance with the federal and state ambient air quality standards. The Air Quality Attainment Plans are incorporated into the State Implementation Plan (SIP), which is subsequently submitted to the U.S. Environmental Protection Agency (EPA), the federal agency that administers the Federal Clean Air Act of 1970, as amended in 1990.
Ambient air quality is described in terms of compliance with state and national standards, and the levels of air pollutant concentrations considered safe, to protect the public health and welfare. These standards are designed to protect people most sensitive to respiratory distress, such as people with asthma, the elderly, very young children, people already weakened by other disease or illness, and persons engaged in strenuous work or exercise. The EPA has established national ambient air quality standards (NAAQS) for seven air pollution constituents. As permitted by the Clean Air Act, California has adopted more stringent air emissions standards (California Ambient Air Quality Standards, or CAAQS) and expanded the number of regulated air constituents.

The California Air Resources Board (CARB) is required to designate areas of the state as attainment, nonattainment, or unclassified for any state standard. An “attainment” designation for an area signifies that pollutant concentrations do not violate the standard for that pollutant in that area. A “nonattainment” designation indicates that a pollutant concentration violated the standard at least once. The air quality attainment status of the SVAB, including the City of Folsom, is shown in Table 4.

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>STATE OF CALIFORNIA ATTAINMENT STATUS</th>
<th>FEDERAL ATTAINMENT STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (1-hour)</td>
<td>Nonattainment</td>
<td>No Federal Standard</td>
</tr>
<tr>
<td>Ozone (8-hour)</td>
<td>Nonattainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>Coarse Particulate Matter (PM_{10})</td>
<td>Nonattainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM_{2.5})</td>
<td>Attainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>Attainment</td>
<td>Attainment/Unclassified</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO_{2})</td>
<td>Attainment</td>
<td>Attainment/Unclassified</td>
</tr>
<tr>
<td>Lead</td>
<td>Attainment</td>
<td>Attainment/Unclassified</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO_{2})</td>
<td>Attainment</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Sulfates</td>
<td>Attainment</td>
<td>No Federal Standard</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>Unclassified</td>
<td>No Federal Standard</td>
</tr>
<tr>
<td>Visibility Reducing Particles</td>
<td>Unclassified</td>
<td>No Federal Standard</td>
</tr>
</tbody>
</table>

Sources: SMAQMD 2020a.

Sacramento County is designated as nonattainment for the state and federal ozone standards, the state PM_{10} standards, and the federal PM_{2.5} standards. Concentrations of all other pollutants meet state and federal standards.

Ozone is not emitted directly into the environment, but is generated from complex chemical reactions between ROG, or non-methane hydrocarbons, and NO_{x} that occur in the presence of sunlight. ROG and NO_{x} generators in Sacramento County include motor vehicles, recreational boats, other transportation sources, and industrial processes. PM_{10} and PM_{2.5} arise from a variety of sources, including road dust, diesel exhaust, fuel combustion, tire and brake wear, construction operations and windblown dust.

Toxic Air Contaminants

Toxic air contaminants (TAC) are a diverse group of air pollutants that may cause or contribute to an increase in deaths or in serious illness or that may pose a present or potential hazard to human health. TACs can cause long-term chronic health effects such as cancer, birth defects, neurological damage, asthma, bronchitis, or genetic damage, or short-term acute effects such as eye watering, respiratory irritation (a cough), runny nose, throat pain, and headaches. TACs are considered either carcinogenic or
noncarcinogenic based on the nature of the health effects associated with exposure to the pollutant. For carcinogenic TACs, there is no level of exposure that is considered safe and impacts are evaluated in terms of overall relative risk expressed as excess cancer cases per one million exposed individuals. Noncarcinogenic TACs differ in that there is generally assumed to be a safe level of exposure below which no negative health impact is believed to occur. These levels are determined on a pollutant-by-pollutant basis.

The Health and Safety Code (§39655[a]) defines TAC as “an air pollutant which may cause or contribute to an increase in mortality or in serious illness, or which may pose a present or potential hazard to human health.” All substances that are listed as hazardous air pollutants pursuant to subsection (b) of Section 112 of the CAA (42 United States Code Sec. 7412[b]) are designated as TACs. Under State law, the California Environmental Protection Agency (CalEPA), acting through CARB, is authorized to identify a substance as a TAC if it determines that the substance is an air pollutant that may cause or contribute to an increase in mortality or an increase in serious illness, or that may pose a present or potential hazard to human health.

Diesel engines emit a complex mixture of air pollutants, including both gaseous and solid material. The solid material in diesel exhaust is referred to as diesel particulate matter (DPM). Almost all DPM is 10 microns or less in diameter, and 90 percent of DPM is less than 2.5 microns in diameter (CARB 2021a). Because of their extremely small size, these particles can be inhaled and eventually trapped in the bronchial and alveolar regions of the lung. In 1998, CARB identified DPM as a TAC based on published evidence of a relationship between diesel exhaust exposure and lung cancer and other adverse health effects. DPM has a notable effect on California’s population—it is estimated that about 70 percent of total known cancer risk related to air toxics in California is attributable to DPM (CARB 2021a).

Air Quality Monitoring

The SMAQMD operates a network of ambient air monitoring stations throughout the Sacramento region. The purpose of the monitoring stations is to measure ambient concentrations of criteria air pollutants and determine whether the ambient air quality meets state and federal standards, pursuant to the CAAQS and the NAAQS. The nearest ambient monitoring station to the project site is the East Natoma Street monitoring station located approximately 3-miles northwest of the project site. The closest monitoring station with data for PM_{10} is the Sacramento – Branch Center Road 2 monitoring station, approximately 13.2-miles southwest of the project site. Air quality data collected at these monitoring stations for the years 2018 through 2020 are shown in Table 5.
Table 5. Summary of Annual Air Quality Data for Folsom Area Air Quality Monitoring Stations

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃): Monitoring location: Folsom – East Natoma Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum concentration 1-hour period (ppm)</td>
<td>0.105</td>
<td>0.087</td>
<td>0.038</td>
</tr>
<tr>
<td>Maximum concentration 8-hour period (ppm)</td>
<td>0.094</td>
<td>0.073</td>
<td>0.036</td>
</tr>
<tr>
<td>Days above 1-hour state standard (>0.09 ppm)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Days above 8-hour state/federal standard (>0.070 ppm)</td>
<td>19</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Coarse Particulate Matter (PM₁₀): Monitoring location: Sacramento – Branch Center Road 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 24-hour concentration (µg/m³)</td>
<td>200.0</td>
<td>53.0</td>
<td>201.0</td>
</tr>
<tr>
<td>Measured Days above 24-hr state standard (>50 µg/m³)</td>
<td>4</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Measured Days above 24-hr federal standard (>150 µg/m³)</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Annual average (µg/m³)</td>
<td>26.5</td>
<td>18.4</td>
<td>33.2</td>
</tr>
<tr>
<td>Exceed state annual standard (20 µg/m³)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM₂.₅): Monitoring location: Folsom – East Natoma Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 24-hour concentration (µg/m³)</td>
<td>104.5</td>
<td>25.4</td>
<td>19.6</td>
</tr>
<tr>
<td>Measured Days above 24-hour federal standard (>35 µg/m³)</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual average (µg/m³)</td>
<td>10.2</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Exceed state and federal annual standard (12 µg/m³)</td>
<td>No</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂): Monitoring location: Folsom – East Natoma Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm)</td>
<td>0.029</td>
<td>0.015</td>
<td>*</td>
</tr>
<tr>
<td>Days above state 1-hour standard (0.18 ppm)</td>
<td>0</td>
<td>0</td>
<td>*</td>
</tr>
<tr>
<td>Days above federal 1-hour standard (0.100 ppm)</td>
<td>0</td>
<td>0</td>
<td>*</td>
</tr>
<tr>
<td>Annual average (ppm)</td>
<td>0.003</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Exceed annual federal standard (0.053 ppm)</td>
<td>No</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Exceed annual state standard (0.030 ppm)</td>
<td>No</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Source: CARB 2021b.

ppb = parts per billion; ppm = parts per million; µg/m³ = micrograms per cubic meter, * = insufficient data available.

As Shown in Table 5, the state 1-hour ozone standard was exceeded on five days in 2018, the state/federal 8-hour ozone standard was exceeded on 19 days in 2018 and two days in 2019, and the state/federal PM₁₀ standards were exceeded on multiple day in 2018 through 2020 and the federal PM₂.₅ standard was exceeded on nine days in 2018. There were no exceedances of NO₂ standards in 2018 through 2020.

Air Quality Attainment Planning

In order to work towards attainment for ozone, PM₁₀ and PM₂.₅, the EPA Office of Air Quality Planning and Standards requires that each state containing nonattainment areas develop a written plan for cleaning the air in those areas. The plans developed combine to make up the SIP. Through these plans, states outline efforts they will make to try to correct the levels of air pollution and bring their areas back into attainment. The status of air quality attainment planning for the Sacramento area is listed below (SMAQMD 2017):

- **8-Hour O₃.** The Sacramento region was classified by the EPA as a “serious” nonattainment area on June 15, 2004 for the federal 8-hour ozone standard, with an attainment deadline of June 15, 2013. Emission reductions needed to achieve the air quality standard were identified using an
air quality modeling analysis. An evaluation of proposed control measures and associated ROG and NOx emission reductions concluded that no set of feasible controls were available to provide the needed emission reductions before the attainment deadline year. Given the magnitude of the shortfall in emission reductions, and the schedule for implementing new control measures, the earliest possible attainment demonstration year for the Sacramento region is determined to be the “severe” area deadline of 2019. Section 181(b)(3) of the Clean Air Act permits a state to request that the EPA reclassify a nonattainment area to a higher classification and extend the time allowed for attainment. This process is appropriate for areas that must rely on longer-term strategies to achieve the emission reductions needed for attainment. The EPA approved this request on May 5, 2010. The Sacramento Regional 8-Hour Ozone Attainment and Reasonable Further Progress Plan was developed by the air districts in the Sacramento region to bring the region into attainment for the ozone NAAQS and CAAQS. The plan is a joint project between the SMAQMD, and four other air districts in the Sacramento region (SMAQMD 2017).

- **1-Hour O₃**: On May 9, 2011, EPA proposed to determine that California is no longer required to implement or submit a CAA Section 185 fee program for 1-hour ozone as a revision to the SIP for the Sacramento Metro 1-hour ozone nonattainment area. EPA has also taken an “interim final” action to stop sanctions from applying to the Sacramento Metro Area.

- **PM₁₀**: In March 2002, the EPA officially determined that Sacramento County had attained the PM₁₀ standards. In November 2010, the SMAQMD formally requested that the EPA redesignate Sacramento County from nonattainment to attainment for PM₁₀. The EPA approved this request effective October 28, 2013. The SMAQMD additionally adopted a PM₁₀ Maintenance Plan. The first Maintenance Plan showed maintenance from 2012 through 2022. A Second Maintenance Plan will be prepared and submitted by The SMAQMD to demonstrate maintenance for ten additional years, through 2032.

- **PM₂.₅**: The Sacramento PM₂.₅ nonattainment area designation met the PM₂.₅ NAAQS by December 31, 2011. On May 9, 2012, CARB submitted a request that EPA find the Sacramento region in attainment for the 2006 24-hour PM₂.₅ NAAQS. EPA issued a proposed rule for Determination of Attainment for the Sacramento Nonattainment Area on October 26, 2012 and a final rule for Determination of Attainment on July 15, 2013. EPA used the updated 2010-2012 ambient air quality data for determination and the final rule became effective on August 14, 2013 (SMAQMD 2017) (EPA 2013). On May 10, 2017, the EPA found the area attained the 2006 24-hour NAAQS by the attainment date of December 31, 2015 based on monitoring data for 2013-2015. The 2013 Maintenance Plan and will be updated and submitted in the future based on the clean data finding made by the EPA.

- **CO**: The region is currently designated attainment for 1-hour and 8-hour CO standards. The Maintenance Plan developed for CO in 1996 was revised in 2004 to extend the 1996 CO Maintenance Plan demonstration to 2018.

Evaluation of Air Quality

While the final determination of whether or not a project has a significant effect is within the purview of the lead agency pursuant to CEQA Guidelines Section 15064(b), SMAQMD recommends that its air pollution thresholds be used to determine the significance of project emissions. The criteria pollutant
thresholds and various assessment recommendations are contained in SMAQMD’s Guide to Air Quality Assessment in Sacramento County (CEQA Guide; 2020, revised), and are discussed under the checklist questions below.

Question a: Less than Significant Impact. In accordance with SMAQMD’s CEQA Guide, construction-generated NOx, PM10, and PM2.5, and operational-generated ROG and NOx (all ozone precursors) are used to determine consistency with the Ozone Attainment Plan. The Guide states (SMAQMD 2020a p. 4-6):

By exceeding the District’s mass emission thresholds for operational emissions of ROG, NOx, PM10, or PM2.5, the project would be considered to conflict with or obstruct implementation of the District’s air quality planning efforts.

As shown in the discussion for question b) below, the project’s construction-generated emissions of NOx, PM10, and PM2.5 and operation-generated emissions ROG and NOx would not exceed SMAQMD thresholds. The project would not conflict with or obstruct implementation of the applicable air quality plan and the impact would be less than significant.

Question b: Less than Significant Impact. The Sacramento region is in non-attainment for ozone (ozone precursors NOx and ROG) and particulate matter (PM2.5 and PM10). The project’s emissions of these criteria pollutants and precursors during construction and operation are evaluated below.

Construction Emissions

The California Emissions Estimator Model (CaEEEmod) version 2020.4.0 was used to quantify project-generated construction emissions. The model output sheets are included in Appendix B. Construction activities were assumed to commence as early as May 2022 and be completed in early 2024. The quantity, duration, and intensity of construction activity influence the amount of construction emissions and related pollutant concentrations that occur at any one time. As such, the emission forecasts provided herein reflect a specific set of conservative assumptions based on the expected construction scenario wherein a relatively large amount of construction activity is occurring in a relatively intensive manner. Because of this conservative assumption, actual emissions could be less than those forecasted. If construction is delayed or occurs over a longer time period, emissions could be reduced because of:

1. a more modern and cleaner-burning construction equipment fleet mix than assumed in CaEEEmod; and/or
2. a less intensive buildout schedule (i.e., fewer daily emissions occurring over a longer time interval).

Construction emissions would be generated by vehicle engine exhaust from off-road construction equipment, on-road hauling trucks, vendor trips, and worker commuting trips. Grading cut/fill would be balanced on-site—no import or export of soil would be required. During paving approximately 289 truckloads (578 one-way truck trips) of aggregate/asphalt would be imported to the site. Model defaults were used for all construction activities with the following modifications:

- The project site is vacant, and no demolition would be required.
- An additional activity for excavation/installation of underground utilities was added, assumed to require one month.
- The use of a water truck for four hours per workday was assumed for the site preparation, grading, and underground utilities activities.
• Architectural coating (e.g., painting) was assumed to occur concurrently with the last three months of physical building construction.

The project's construction period emissions of ROG, NOx, PM10, and PM2.5 are compared to the SMAQMD construction thresholds in Table 6. The SMAQMD does not have a recommended threshold for construction-generated ROG. However, quantification and disclosure of ROG emissions is recommended. The SMAQMD considers any emissions of PM10 and PM2.5 to be significant unless the Basic Construction Emissions Control Practices are implemented, also known as Best Management Practices (BMP). The project would implement all of the SMAQMD BMPs to control fugitive dust in accordance with SMAQMD Rule 403. The modeling accounts for emissions reductions resulting from watering exposed surfaces twice daily. As shown in Table 6, the proposed project construction period emissions of the ozone precursor NOx, PM10, and PM2.5 would not exceed the SMAQMD thresholds. Impacts related to construction-generated emissions of ROG, NOx, PM10, and PM2.5 would be less than significant.

Table 6. Construction Criteria Pollutant and Precursor Emissions

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>NOx (pounds/day)</th>
<th>ROG (pounds/day)¹</th>
<th>PM10 (pounds/day)</th>
<th>PM2.5 (pounds/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Preparation</td>
<td>35.1</td>
<td>3.5</td>
<td>10.7</td>
<td>6.1</td>
</tr>
<tr>
<td>Grading</td>
<td>40.9</td>
<td>4.0</td>
<td>6.0</td>
<td>3.3</td>
</tr>
<tr>
<td>Underground Utilities</td>
<td>10.2</td>
<td>1.1</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Paving</td>
<td>16.6</td>
<td>1.8</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Building Construction</td>
<td>19.5</td>
<td>2.8</td>
<td>3.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Architectural Coatings</td>
<td>1.4</td>
<td>51.2</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Concurrent 2023 Building Construction and Architectural Coating</td>
<td>19.1</td>
<td>53.7</td>
<td>3.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Maximum Daily Emissions</td>
<td>40.9</td>
<td>53.7²</td>
<td>10.7</td>
<td>6.1</td>
</tr>
<tr>
<td>SMAQMD Threshold</td>
<td>None</td>
<td>85</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>Threshold exceeded?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Source of emissions estimates: CalEEMod output (Appendix B).
¹ Maximum daily emissions of ROG would occur in summer, maximum daily emissions of all other analyzed pollutants would occur in winter or are not seasonally dependent.
² Maximum daily emissions of ROG would be the combined emissions from Building Construction and Architectural Coating which would occur concurrently in 2023.

Operational Emissions

Regional Emissions

SMAQMD provides screening levels to identify when additional analysis is necessary to determine potential significance for operational ROG, NOx, PM10, or PM2.5 emissions. The operational screening
levels represent the development size at which the operational emissions thresholds of significance would not be exceeded. According to the screening thresholds, if a proposed mid-rise apartment project is less than 740 dwelling units, then the project would not have the potential to exceed SMAQMD's recommended mass emission thresholds for NOx or ROG during operation. The PM$_{10}$ and PM$_{2.5}$ screening level is 1,485 dwelling units. The proposed project would develop 253 dwelling unit, less than the screening thresholds and project-specific modeling for operational emissions is not required. Therefore, impacts related to project long-term operational emissions of ROG, NOx, PM$_{10}$, and PM$_{2.5}$, would be less than significant.

Impact Conclusion

The project would not result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment, and the impact would be less than significant.

Question c: Less than Significant Impact. CARB and the Office of Environmental Health Hazard Assessment (OEHHA) have identified the following groups of individuals as the most likely to be affected by air pollution: the elderly over 65, children under 14, infants (including in utero in the third trimester of pregnancy), and persons with cardiovascular and chronic respiratory diseases such as asthma, emphysema, and bronchitis (CARB 2005, OEHHA 2015). Some land uses are considered more sensitive to air pollution than others due to the types of population groups or activities involved and are referred to as sensitive receptor locations. Examples of these sensitive receptor locations are residences, schools, hospitals, and daycare centers.

The closest existing sensitive receptor sites to the project site are multi-family senior housing buildings approximately 70 feet west of Lot 1, and single-family residences approximately 150 feet nor (across Iron Point Road) of Lot 6. The closest school to the project site is the Gold Ridge Elementary School approximately 1,700 feet (0.32 mile) north of the project site. There are no hospitals or daycare centers located within 0.5-mile of the project site.

Implementation of the project would result in the use of heavy-duty construction equipment, haul trucks, and construction worker vehicles. These vehicles and equipment would generate the TAC DPM. Generation of DPM from construction projects typically occurs in a localized area (e.g., at the project site) for a short period of time. Because construction activities and subsequent emissions vary depending on the construction activity (e.g., grading, building construction), the construction-related emissions to which nearby receptors are exposed to would also vary throughout the construction period. During some equipment-intensive activities such as grading and excavation, construction-related emissions would be higher than other less equipment-intensive activities such as building construction.

The dose (of TAC) to which receptors are exposed is the primary factor used to determine health risk. Dose is a function of the concentration of a substance in the environment and the extent of exposure a person has with the substance; a longer exposure period to a fixed quantity of emissions would result in higher health risks. Current models and methodologies for conducting cancer health risk assessments are associated with longer-term exposure periods (typically 30 years for individual residents based on guidance from OEHHA) and are best suited for evaluation of long duration TAC emissions with predictable schedules and locations. These assessment models and methodologies do not correlate well with the temporary and highly variable nature of construction activities. Cancer potency factors are based on animal lifetime studies or worker studies where there is long-term exposure to the carcinogenic agent. There is considerable uncertainty in trying to evaluate the cancer risk from projects.
that will only last a small fraction of a lifetime (OEHHA 2015). In addition, concentrations of mobile source DPM emissions disperse rapidly and are typically reduced by 70 percent at approximately 500-feet (CARB 2005). Considering this information, the highly dispersive nature of DPM, and the fact that construction activities would occur at various locations throughout the project site, it is not anticipated that construction of the project would expose sensitive receptors to substantial DPM concentrations.

According to the SMAQMD, land use development projects do not typically have the potential to result in localized concentrations of criteria air pollutants that expose sensitive receptors to substantial pollutant concentrations. This is because criteria air pollutants are predominantly generated in the form of mobile-source exhaust from vehicle trips associated with the land use development project. These vehicle trips occur throughout a paved network of roads, and, therefore, associated exhaust emissions of criteria air pollutants are not generated in a single location where high concentrations could be formed (SMAQMD 2020a). Therefore, localized concentration of CO from exhaust emissions, or “CO hotspots,” would only be a concern on high-volume roadways where vertical and/or horizontal mixing is substantially limited, such as tunnels or below grade highways. There are no high-volume roadways in the region with limited mixing that would be affected by project generated traffic. Once operational, the project would not be a significant source of TACs. Therefore, the project would not expose sensitive receptors to substantial pollutant concentrations, and the impact would be less than significant.

The project would site new sensitive receptors within 1,000-feet of US Highway 50. High volume roads (roads that carry 100,000 or more vehicles per days) are considered substantial sources of TACs, including DPM and other TACs contained in vehicle exhaust Total Organic Gases (TOG) emissions, including benzene, ethylbenzene, and formaldehyde. The SMAQMD does not consider the health risk to sensitive receptors sited by a land use development project from high volume roadways to be a CEQA analysis requirement in accordance with the 2015 California Supreme Court decision in the case of California Building Industry Association v. Bay Area Air Quality Management District (SMAQMD 2019). The SMAQMD recommends that lead agencies us their Mobile Sources Air Toxics Protocol to evaluate the potential increased health risks to receptors near high-volume roadways (SMAQMD 2020b). The increased health risks to future project residents were evaluated using the guidance and tools in the Mobile Sources Air Toxics Protocol and were found to be potentially significant. To reduce health risk associated with concentrations of TACs along US Highway 50, it is recommended that the project be conditioned to require the installation of heating, ventilation, and air conditioning (HVAC) systems equipped with filters having a minimum efficiency reporting value (MERV) of 13 or better. A letter summarizing the methodology, results, and risk reduction recommendations from the Mobile Sources Air Toxics Protocol analysis is included in Appendix B.

Question d: Less than Significant Impact with Mitigation. The project is located in proximity to US Highway 50; Lot 1 located approximately 90-feet from the nearest travel lane and Lot 6 is located approximately 370-feet from the nearest travel lanes. The increase in health risks to future project residents resulting from proximity to US Highway 50 was estimated using the SMAQMD’s Mobile Sources Air Toxics Protocol (MSAT Protocol).

Using the MSAT Protocol Mapping Tool, the project Lot 1 apartments are in an area with increased cancer risks ranging from 19 in 1 million to 32 in 1 million, and PM$_{2.5}$ concentrations ranging from 0.49 µg/m³ to 0.91 µg/m³. Lot 6 has cancer risk ranging from 30 in 1 million to 47 in 1 million and PM$_{2.5}$ concentrations ranging from 0.8 µg/m³ to 1.3 µg/m³. Note: Lot 6 has higher cancer risks even though it is further from US Highway 50. This result is likely due to the terrain—Lot 6 is close to the same elevation as the freeway and Lot 1 is elevated 30 to 40 feet above the freeway. The cancer risk increase would
exceed both the Bay Area Air Quality Management District’s (BAAQMD) threshold of 10 in 1 million and the San Joaquin Air Pollution Control District’s (SJCAPCD) threshold of 20 in 1 million. PM2.5 concentrations would exceed the BAAQMD’s threshold of 0.8 μg/m³. Therefore, the increase health risk to future project residents would be potentially significant. Accordingly, the proposed project shall be conditioned with the following health risk reduction measure:

Mitigation Measure AIR-1: Mechanical Ventilation System

- The building design shall include a mechanical ventilation system that meets the criteria of the International Building Code (Chapter 12, §1203.2 of the California Building Code) to ensure that windows would be able to remain closed while maintaining adequate ventilation and temperature control. The mechanical ventilation system shall be designed to accommodate, and equipped with, filters having a Minimum Efficiency Reporting Value (MERV) rating of 13 or higher.

Implementation of Mitigation Measure AIR-1 would reduce the potential impacts associated with elevated health risk due to the project’s proximity to US Highway 50 to below a level of significance.

Question e: Less than Significant Impact. Odors associated with diesel exhaust and ROG from application of asphalt and architectural coatings would be emitted during project construction. The odor of these emissions is objectionable to some; however, emissions would disperse rapidly from the project site and therefore should not be at a level that would affect a substantial number of people. Further, construction activities would be temporary. As a result, impacts associated with temporary odors during construction are not considered significant.

As a residential development, operation of the project would not result in odors affecting a substantial number of people. Solid waste generated by the project would be collected by a contracted waste hauler, ensuring that any odors resulting from on-site waste would be managed and collected in a manner to prevent the proliferation of odors. The project would not result in other emissions (such as those leading to odors) adversely affecting a substantial number of people, and the impact would be less than significant.
IV. BIOLOGICAL RESOURCES

<table>
<thead>
<tr>
<th>BIOLOGICAL RESOURCES:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Biological resource evaluations prepared for the proposed project have been incorporated by reference and are presented in their entirety in Appendix C.

Environmental Setting

The area in which the project is located is characterized by suburban residential development, commercial business centers, transportation, and small pockets of open space. US Highway 50 is immediately south of the project site. Lands in the City of Folsom surrounding the project site that lie north of US Highway 50 are largely developed with commercial and residential development, while lands across US Highway 50 to the south of the project site remain largely in open space (primarily used for cattle grazing), although development is occurring in the City of Folsom south of US Highway 50 and to the east of the project site.
Lot 1 shows no alteration in the use or condition of the property dating back to 1952 (NETR 2021). Lot 1 slopes downward from east to west with elevations ranging from 371 feet amsl in the east to 317 feet amsl in the west. Lot 1 is predominantly comprised of non-native annual grassland with a single oak tree in the southeast of the parcel. Lot 1 features a small parking lot in the northwest corner of the parcel, and a small sidewalk with minor landscaping elements connecting the parking lot to the rest of the parcel where the Kaiser Permanente Medical Offices are located. The rest of the site is vacant.

Lot 6 is dominated by ruderal/disturbed habitat, with a small stand of native oak trees (Quercus sp.) in the southwest corner of the parcel. The project site is not associated with any current land use; however, historic aerial imagery shows that Lot 6 was partially graded and used to store materials and debris in 2009 during the construction of the adjacent Folsom Corporate Center and much of that debris has remained on site. Lot 6 slopes down towards the east through a series of partially graded terraces, with elevations ranging from 370 feet amsl to the west and 358 feet amsl to the east.

Regulatory Framework Related to Biological Resources

Federal Regulations

Federal Endangered Species Act

The U.S. Fish and Wildlife Service (USFWS) enforces the provisions stipulated within the Federal Endangered Species Act of 1973 (FESA; 16 USC 1531 et seq.). Species identified as federally threatened or endangered (50 CFR 17.11, and 17.12) are protected from take, defined as direct or indirect harm, unless a Section 10 permit is granted to an entity other than a federal agency or a Biological Opinion with incidental take provisions is rendered to a federal lead agency via a Section 7 consultation. Pursuant to the requirements of FESA, an agency reviewing a proposed project within its jurisdiction must determine whether any federally listed species may be present in the project site and determine whether the proposed project will jeopardize the continued existence of or result in the destruction or adverse modification of critical habitat of such species (16 USC 1536 (a)[3], [4]). Other federal agencies designate species of concern (species that have the potential to become listed), which are evaluated during environmental review under the National Environmental Protection Act (NEPA) or CEQA although they are not otherwise protected under FESA.

Migratory Bird Treaty Act

The Migratory Bird Treaty Act (MBTA) of 1918 established federal responsibilities for the protection of nearly all species of birds, their eggs, and nests. The Migratory Bird Treaty Reform Act of 2004 further defined species protected under the act and excluded all non-native species. Section 16 U.S.C. 703–712 of the Act states “unless and except as permitted by regulations, it shall be unlawful at any time, by any means or in any manner, to pursue, hunt, take, capture, kill, attempt to take, capture, or kill” a migratory bird. A migratory bird is any species or family of birds that live, reproduce or migrate within or across international borders at some point during their annual life cycle. Currently, there are 836 migratory birds protected nationwide by the Migratory Bird Treaty Act, of which 58 are legal to hunt. The U.S. Court of Appeals for the 9th Circuit (with jurisdiction over California) has ruled that the MBTA does not prohibit incidental take (952 F 2d 297 – Court of Appeals, 9th Circuit 1991).
State Jurisdiction

California Endangered Species Act

The California Endangered Species Act (CESA) (California Fish and Game Code Sections 2050 to 2097) is similar to the FESA. The California Fish and Wildlife Commission is responsible for maintaining lists of threatened and endangered species under CESA. CESA prohibits the take of listed and candidate (petitioned to be listed) species. “Take” under California law means to hunt, pursue, catch, or kill, or attempt to hunt, pursue, catch capture, or kill (California Fish and Game Code, Section 86). The California Department of Fish and Wildlife (CDFW) can authorize take of a state-listed species under Section 2081 of the California Fish and Game Code if the take is incidental to an otherwise lawful activity, the impacts are minimized and fully mitigated, funding is ensured to implement and monitor mitigation measures, and CDFW determines that issuance would not jeopardize the continued existence of the species. A CESA permit must be obtained if a project will result in the “take” of listed species, either during construction or over the life of the project. For species listed under both FESA and CESA requiring a Biological Opinion under Section 7 of the FESA, CDFW may also authorize impacts to CESA species by issuing a Consistency Determination under Section 2080.1 of the Fish and Game Code.

California Code of Regulations Title 14 and California Fish and Game Code

The official listing of endangered and threatened animals and plants is contained in the California Code of Regulations Title 14 §670.5. A state candidate species is one that the California Fish and Game Code has formally noticed as being under review by CDFW to include in the state list pursuant to Sections 2074.2 and 2075.5 of the California Fish and Game Code.

Legal protection is also provided for wildlife species in California that are identified as “fully protected animals.” These species are protected under Sections 3511 (birds), 4700 (mammals), 5050 (reptiles and amphibians), and 5515 (fish) of the California Fish and Game Code. These statutes prohibit take or possession of fully protected species at any time. CDFW is unable to authorize incidental take of fully protected species unless any such take authorization is issued in conjunction with the approval of a Natural Community Conservation Plan that covers the fully protected species (California Fish and Game Code Section 2835).

California Environmental Quality Act

Under the California Environmental Quality Act of 1970 (CEQA; Public Resources Code Section 21000 et seq.), lead agencies analyze whether projects would have a substantial adverse effect on a candidate, sensitive, or special-status species (Public Resources Code Section 21001(c)). These “special-status” species generally include those listed under FESA and CESA, and species that are not currently protected by statute or regulation, but would be considered rare, threatened, or endangered under the criteria included CEQA Guidelines Section 15380. Therefore, species that are considered rare are addressed under CEQA regardless of whether they are afforded protection through any other statute or regulation. The California Native Plant Society (CNPS) inventories the native flora of California and ranks species according to rarity; plants ranked as 1A, 1B, 2A, 2B, and 3 are generally considered special-status species under CEQA.

Although threatened and endangered species are protected by specific federal and state statutes, CEQA Guidelines Section 15380(d) provides that a species not listed on the federal or state list of protected species may be considered rare if it can be shown to meet certain specified criteria. These criteria have
been modeled after the definition in FESA and the section of the California Fish and Game Code dealing with rare or endangered plants and animals. Section 15380(d) allows a public agency to undertake a review to determine if a significant effect on species that have not yet been listed by either the USFWS or CDFW (i.e., candidate species) would occur.

Native Plant Protection Act

The California Native Plant Protection Act of 1977 (California Fish and Game Code Sections 1900-1913) empowers the Fish and Game Commission to list native plant species, subspecies, or varieties as endangered or rare following a public hearing. To the extent that the location of such plants is known, CDFW must notify property owners that a listed plant is known to occur on their property. Where a property owner has been so notified by CDFW, the owner must notify CDFW at least 10 days in advance of any change in land use (other than changing from one agricultural use to another), in order that CDFW may salvage listed plants that would otherwise be destroyed. Currently, 64 taxa of native plants have been listed as rare under the act.

Nesting Birds

California Fish and Game Code Subsections 3503 and 3800 prohibit the possession, take, or needless destruction of birds, their nests, and eggs, and the salvage of dead nongame birds. California Fish and Game Code Subsection 3503.5 protects all birds in the orders of Falconiformes and Strigiformes (birds of prey). Fish and Game Code Subsection 3513 states that it is unlawful to take or possess any migratory nongame bird as designated in the Migratory Bird Treaty Act or any part of such migratory nongame bird except as provided by rules and regulations adopted by the Secretary of the Interior under provisions of the Migratory Bird Treaty Act. The Attorney General of California has released an opinion that the Fish and Game Code prohibits incidental take.

Jurisdictional Waters

Federal Jurisdiction

Unless considered an exempt activity under Section 404(f) of the Federal Clean Water Act, any person, firm, or agency planning to alter or work in "waters of the U.S.,” including the discharge of dredged or fill material, must first obtain authorization from the USACE under Section 404 of the Clean Water Act (CWA; 33 USC 1344). Permits, licenses, variances, or similar authorization may also be required by other federal, state, and local statutes. Section 10 of the Rivers and Harbors Act prohibits the obstruction or alteration of navigable waters of the U.S. without a permit from USACE (33 USC 403). Activities exempted under Section 404(f) are not exempted within navigable waters under Section 10.

"Waters of the U.S." are defined as: “All waters that are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters that are subject to the ebb and flow of the tide; all interstate waters including interstate wetlands; all other waters such as intrastate lakes, rivers, streams (including intermittent streams), mudflats, sand flats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes or natural ponds, the use, degradation, or destruction of which could affect interstate commerce; impoundments of these waters; tributaries of these waters; the territorial sea; or wetlands adjacent to these waters (33 Code of Federal Regulations [CFR] Part 328).”

Within non-tidal waters that meet the definition cited above and, in the absence of adjacent wetlands, the indicator used by the USACE to determine the lateral extent of its jurisdiction is the ordinary high
water mark (OHWM) – the line on the shore established by fluctuations of water and indicated by a clear, natural line impressed on the bank, shelving, changes in soil character, destruction of terrestrial vegetation, and/or the presence of litter and debris.

Wetlands are defined under the CFR Part 328.3 as those areas that are inundated or saturated by surface or ground water at a frequency and duration to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions.

The USACE has determined that not all features which meet the wetland definition are, in fact, considered to be waters of the U.S. Normally, features not considered as waters of the U.S. include (a) non-tidal drainage and irrigation ditches excavated on dry land; (b) artificially irrigated areas which would revert to upland if the irrigation ceased; (c) artificial lakes or ponds created by excavating and/or diking dry land to collect and retain water and which are used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing, (d) artificial reflecting or swimming pools or other small ornamental bodies of water created by excavating and/or diking dry land to retain water for primarily aesthetic reasons, and (e) waterfilled depressions created in dry land incidental to construction activity and pits excavated in dry land for the purpose of obtaining fill, sand, or gravel unless and until the construction or excavation operation is abandoned and the resulting body of water meets the definition of waters of the United States (see 33 CFR 328.3(a)). Other features may be excluded based on Supreme Court decisions (e.g., SWANCC and Rapanos) or by regulation.

Federal and state regulations pertaining to waters of the U.S., including wetlands, are discussed below.

Clean Water Act (33 USC 1251-1376). The CWA provides guidance for the restoration and maintenance of the chemical, physical, and biological integrity of the nation’s waters.

Section 401 requires that an applicant for a federal license or permit that allows activities resulting in a discharge to waters of the U.S. must obtain a state certification that the discharge complies with other provisions of CWA. The Regional Water Quality Control Board (RWQCB) administers the certification program in California and may require State Water Quality Certification before other permits are issued.

Section 402 establishes a permitting system for the discharge of any pollutant (except dredged or fill material) into waters of the U.S.

Section 404 establishes a permit program administered by USACE that regulates the discharge of dredged or fill material into waters of the U.S. (including wetlands). Implementing regulations by USACE are found at 33 CFR Parts 320-332. The Section 404 (b)(1) Guidelines were developed by the USEPA in conjunction with USACE (40 CFR Part 230), allowing the discharge of dredged or fill material for non-water dependent uses into special aquatic sites only if there is no practicable alternative that would have less adverse impacts.

State Jurisdiction

Regional Water Quality Control Board

Any action requiring a CWA Section 404 permit, or a Rivers and Harbors Act Section 10 permit, must also obtain a CWA Section 401 Water Quality Certification. The State of California Water Quality Certification (WQC) Program was formally initiated by the State Water Resources Control Board (SWRCB) in 1990 under the requirements stipulated by Section 401 of the Federal CWA. Although the Clean Water Act is a
Federal law, Section 401 of the CWA recognizes that states have the primary authority and responsibility for setting water quality standards. In California, under Section 401, the State and Regional Water Boards are the authorities that certify that issuance of a federal license or permit does not violate California’s water quality standards (i.e., that they do not violate Porter-Cologne and the Water Code). The WQC Program currently issues the WQC for discharges requiring USACE’s permits for fill and dredge discharges within Waters of the United States, and now also implements the State’s wetland protection and hydromodification regulation program under the Porter-Cologne Water Quality Control Act.

On April 2, 2019, the SWRCB adopted a State Wetland Definition and Procedures for Discharges of Dredged or Fill Material to Waters of the State (Procedures), for inclusion in the forthcoming Water Quality Control Plan for Inland Surface Waters and Enclosed Bays and Estuaries and Ocean Waters of California. The Procedures consist of four major elements: 1) a wetland definition; 2) a framework for determining if a feature meets the wetland definition is a water of the state; 3) wetland delineation procedures; and 4) procedures for the submittal, review and approval of applications for Water Quality Certifications and Waste Discharge Requirements for dredge or fill activities. The Office of Administrative Law approved the Procedures on August 28, 2019, and the Procedures became effective May 28, 2020.

Under the Procedures and the State Water Code (Water Code §13050(e)), “Waters of the State” are defined as “any surface water or groundwater, including saline waters, within the boundaries of the state.” Unless excluded by the Procedures, any activity that could result in discharge of dredged or fill material to Waters of the State, which includes Waters of the U.S. and non-federal Waters of the State, requires filing of an application under the Procedures.

The Porter-Cologne Water Quality Control Act (Porter-Cologne Act, Water Code Section 13000 et seq.) is California’s statutory authority for the protection of water quality in conjunction with the federal CWA. The Porter-Cologne Act requires the SWRCB and RWQCBs under the CWA to adopt and periodically update water quality control plans, or basin plans. Basin plans are plans in which beneficial uses, water quality objectives, and implementation programs are established for each of the nine regions in California. The Porter-Cologne Act also requires dischargers of pollutants or dredged or fill material to notify the RWQCBs of such activities by filing Reports of Waste Discharge and authorizes the SWRCB and RWQCBs to issue and enforce waste discharge requirements, National Pollution Discharge Elimination System (NPDES) permits, Section 401 water quality certifications, or other approvals.

California Department of Fish and Wildlife

The CDFW is a trustee agency that has jurisdiction under Section 1600 et seq. of the California Fish and Game Code. Under Sections 1602 and 1603, a private party must notify CDFW if a proposed project will “substantially divert or obstruct the natural flow or substantially change the bed, channel, or bank of streambeds...except when the department has been notified pursuant to Section 1601.” Additionally, CDFW asserts jurisdiction over native riparian habitat adjacent to aquatic features, including native trees over four inches in diameter at breast height (DBH). If an existing fish or wildlife resource may be substantially adversely affected by the activity, CDFW may propose reasonable measures that will allow protection of those resources. If these measures are agreeable to the parties involved, they may enter into an agreement with CDFW identifying the approved activities and associated mitigation measures. Generally, CDFW recommends submitting an application for a Streambed Alteration Agreement (SAA) for any work done within the lateral limit of water flow or the edge of riparian vegetation, whichever is greater.
Local Regulations

City of Folsom Tree Preservation Ordinance

Chapter 12.16 of the Folsom Municipal Code, the Tree Preservation Ordinance, regulates the cutting or modification of trees, including oaks and specified other trees; requires a Tree Permit prior to cutting or modification; and establishes mitigation requirements for cut or damaged trees. The Tree Preservation Ordinance establishes policies, regulations, and standards necessary to ensure that the City will continue to preserve and maintain its “urban forests”. Anyone who wishes to perform “Regulated Activities” on “Protected Trees” must apply for a permit with the City. Regulated activities include:

- Removal of a Protected Tree;
- Pruning/trimming of a Protected Tree; and/or,
- Grading or trenching within the Protected zone.

Protected trees include:

- Native oak trees with a diameter at standard height (DSH; 4.5 feet above ground level) of 6 inches or larger for single trunk trees or 20 inches or larger combined diameter of native oak multi-trunk trees. Native oak species include:
 - valley oak (*Quercus lobata*)
 - blue oak (*Quercus douglasii*)
 - interior live oak (*Quercus wislizenii*)
 - coast live oak (*Quercus agrifolia*)
- Heritage oak trees - native oaks with a trunk DSH of 19 inches or greater and native oaks with a multi-trunk diameter of 38 inches or greater;
- Landmark trees identified individually by the City Council through resolution as being a significant community benefit; and/or,
- Street trees within the tree maintenance strip.

Methods

Information used in preparation of this Initial Study comes from the following sources:

- Desktop review of regionally occurring special-status species and habitats with potential to occur in the project site and/or be affected by the proposed project;
- Biological reconnaissance survey performed by HELIX biologists in October 2021;
- Biological Review for Iron Point Road Apartments Development, prepared by SCS Engineers, dated February 25, 2021; and,
- Arborist inventory of remaining trees performed by HELIX biologist/arborist in November 2021.
For the purposes of this report, special-status species are those that fall into one or more of the following categories, including those:

- listed as endangered or threatened under the Federal Endangered Species Act (FESA; including candidates and species proposed for listing);
- listed as endangered or threatened under the California Endangered Species Act (CESA; including candidates and species proposed for listing);
- designated as rare, protected, or fully protected pursuant to California Fish and Game Code;
- designated a Species of Special Concern (SSC) by the California Department of Fish and Wildlife (CDFW);
- considered by CDFW to be a Watch List species with potential to become an SSC;
- defined as rare or endangered under Section 15380 of the California Environmental Quality Act (CEQA); or,
- Having a California Rare Plant Rank (CRPR) of 1A, 1B, 2A, 2B, or 3.

In order to evaluate special-status species and/or their habitats with the potential to occur on the project site and/or be impacted by the proposed project, HELIX obtained lists of special-status species known to occur and/or having the potential to occur in the project site and vicinity from the U.S. Fish and Wildlife Service (USFWS; USFWS 2021), the California Native Plant Society (CNPS; CNPS 2021), and the California Natural Diversity Database (CNDDB; CDFW 2021). The results of the biological database and records searches for the project site, as well as a list of species observed during the biological reconnaissance, are compiled in Appendix C.

Biological Reconnaissance Survey

A biological reconnaissance survey was conducted on October 13, 2021, by HELIX biologists Stephen Stringer, M.S. International Society of Arboriculture (ISA) Certified Arborist (WE-7129A) and Stephanie McLaughlin, M.S., ISA Certified Arborist (WE-12922A) between 1230 and 1430 hours. The biological reconnaissance survey was accomplished by walking meandering transects through the project site in order to obtain 100 percent visual coverage of the site. Habitats present in the project site were classified based on the dominant plant species present and identifiable at the time of the survey. The project site was also reviewed for aquatic features exhibiting characteristics of waters of the U.S. or State, including the presence of hydrophytic vegetation, hydric soil, wetland hydrology, bed and bank, or depressional topography. Following the field survey, the potential for each species identified in the database query to occur within the project site was determined based on the site survey, soils, habitats present within the project site, and species-specific information, as shown in Appendix C.

Arborist Inventory

The Arborist Report prepared by Arborwell Professional Tree Management and dated December 29, 2020, inventoried a majority of the trees in the project site but did not include the trees located in the landscaped strip in the southeastern corner of Lot 6.
HELIX Biologist and International Society of Arboriculture certified arborist Stephanie McLaughlin (ISA # WE-12922A) surveyed the additional trees in the southeastern corner of Lot 6 on November 2, 2021. The following data were collected for all native and non-native oak trees with a DSH of six inches or greater on the site: species, trunk diameter at 4.5-feet above the ground (DSH), dripline radius, estimated height, and overall health and structure of the tree. Overall condition was rated on a five-point scale of 0 (dead), 1 (severe decline), 2 (declining), 3 (fair), 4 (good), or 5 (excellent). Comments such as number of trunks, irregularities, scars or other growth characteristics or vigor indicators were recorded for each tree. Recommendations for preservation or removal were made based on each tree's condition. The location of each tree was recorded using an EOS Systems Arrow 100 Global Navigation Satellite System receiver with sub-meter accuracy. Trees on the site were identified in the field with pre-printed numbered tags.

Habitat Types/Vegetation Communities

Habitat types/vegetation communities on the project site include blue oak woodland, non-native annual grassland, ruderal/disturbed, and developed. Habitats and land covers are depicted on Figure 5 in Appendix A.

Non-Native Annual Grassland

Non-native annual grasslands are open grasslands composed primarily of annual species. Germination follows the onset of winter rains; however, growth is slow during cold weather and plants remain low in stature until spring. Grasses flower and set seed by early summer, and large amounts of standing dead thatch are present by mid-summer in the absence of grazing.

The non-native annual grassland in the project site is found on Lot 1 and is dominated by ripgut brome (*Bromus diandrus*), soft brome (*Bromus hordeaceus*), prickly lettuce (*Lactuca serriola*), and yellow-star thistle (*Centaurea solstitialis*). The majority of the species observed were non-native; however, native species on the site include doveweed (*Croton setiger*), and yellowflower tarweed (*Holocarpha virgata*). The non-native annual grassland habitat on Lot 1 is in a somewhat disturbed condition. The contours of the parcel show a history of grading and fill, with tire ruts and depressions scattered throughout the site. The project site includes 6.95-acres of non-native annual grassland, all of which is found on Lot 1.

Blue Oak Woodland

Blue oak woodland is composed of a pronounced hardwood tree layer, with a poorly developed shrub stratum, and a sparse, grassy herbaceous layer. The canopy is entirely dominated by blue oak (*Quercus douglasii*). The herbaceous layer of this community consists of similar species to what was observed in the annual grassland habitat, such as ripgut brome, prickly lettuce, and yellow-star thistle. Blue oak woodland habitat comprises 0.62-acres of the project site, all of which is found in the southwest corner of Lot 6.

Ruderal/Disturbed

Ruderal/disturbed habitat occurs in areas that are heavily disturbed by past or ongoing human activities but retain a soil substrate. Ruderal/disturbed areas may be sparsely to densely vegetated, but do not support a recognizable community or species assemblage. Vegetative cover is usually herbaceous and dominated by a wide variety of weedy non-native species or a few ruderal native species.
Ruderal/disturbed habitat, which totals 3.61-acres, comprises much of Lot 6. This habitat on the project site is dominated by a dense cover of non-native annual grasses, with small patches of native and non-native grasses and forbs and is heavily disturbed. Ripgut brome, yellow-star thistle, yellowflower tarweed, and medusa head (Elymus caput-medusae) make up the majority of the herbaceous cover on the project site in terms of percent cover. Nearly all herbaceous plant species observed during the biological reconnaissance are non-natives associated with disturbance; however, native plants observed include coyote brush (Baccharis pilularis) and deer grass (Muhlenbergia rigens). A small sliver of landscaping borders the eastern edge of Lot 6, it consists of ornamental scrub species as well as several valley oaks (Quercus lobata) and cork oaks (Quercus suber).

The contours of Lot 6 reflect a history of fill, grading, and other modifications resulting in tire ruts, graded areas, and depressions. There are several large debris piles consisting of rock and rebar in the center of Lot 6. Stormwater from the developed areas in the surrounding business park is discharged into a small, graded depression within the ruderal/disturbed habitat on the east end of Lot 6 through a culvert outfall that enters the site from under the parking lot to the south. The graded depression and culvert outfall appears to have been constructed as part of the stormwater management system for the Folsom Corporate Center. The graded depression contains some wetland plants typical of disturbed areas but is not considered a potential waters of the U.S. or State because it was constructed on a graded pad in uplands for the purposes of managing stormwater drainage.

Developed

Developed areas on the project site includes parking lots and roadways surrounding both parcels. A paved arterial roadway runs along the eastern and southern borders of Lot 6. Developed land near Lot 1 consists of a paved roadway and a portion of a parking lot along the parcels northern border. Developed habitat in the project site is asphalt paved and completely devoid of vegetative cover. This habitat type comprises 0.86-acres of the project site.

Wildlife

In general, wildlife use of the site is expected to be limited to common disturbance-tolerant species adapted to living in urban and suburban areas in close proximity to humans. Species observed using the habitats in the project site included mourning dove (Zenaida macroura), acorn woodpecker (Melanerpes formicivorus), northern flicker (Colaptes auratus), black-tailed jackrabbit (Lepus californicus), and house finch (Carpodacus mexicanus).

Special-Status Species with Potential to Occur

A total of 22 regionally occurring special-status plant species and 31 regionally occurring special-status wildlife species were identified during the database queries and desktop review and are evaluated in Appendix C.

Special-Status Plant Species

A total of 22 regionally occurring special-status plant species were identified during the database queries and desktop review. The majority of the special-status plant species are associated with aquatic habitats, including vernal pools. The remaining species are associated with grasslands, chapparal,
cismontane woodlands, coniferous forests, and alkaline habitat, or have specific requirements for lone, gabbroic, serpentine, or volcanic soils that were not found in the project site.

There is currently no suitable habitat for special-status plant species in the project site and there have been no reported occurrences of special-status plant species on or adjacent to the project site in the CNDDB. Special-status plant species are not expected to occur in the project site or be impacted by the proposed project.

Special-Status Animal Species

A total of 31 regionally occurring special-status wildlife species were identified during the database searches and desktop review. The majority of the special-status wildlife species are associated with aquatic habitats of the adjacent Sacramento Valley such as rivers, sloughs, and freshwater wetlands, including vernal pools. The remaining species are associated with open areas, grasslands, coniferous forests, and cliff habitat, or have specific food species requirements that were not found on the project site.

No special-status wildlife species were observed in the project site during the biological reconnaissance survey and there are no reported occurrences in the CNDDB of special-status animal species in or adjacent to the project site. Based on the evaluation of regionally occurring special-status species documented in Appendix C, the project site provides marginal habitat for burrowing owl (*Athene cunicularia*) and white-tailed kite (*Elanus leucurus*) as well as habitat for other nesting raptors and migratory birds. These species are discussed briefly below. There is no suitable habitat in the project site for the remainder of the regionally occurring special-status species evaluated. Species determined to have no potential to occur in the project site or be impacted by the proposed project are not discussed further in this report.

Burrowing Owl

Burrowing owls are year-round residents of most parts of California, though local seasonal movements are common and populations in northeastern California and high elevations may migrate to lower elevations during the winter. Burrowing owls inhabit underground burrows, especially those of California ground squirrels (*Otospermophilus beecheyi*), and artificial holes such as pipes, culverts, and crevices in debris piles. Suitable habitat is open and relatively flat, with short vegetation, low perches or mounds, and abundant rodent and insect prey. Common examples of suitable habitat include agricultural fields, pastures, grasslands, deserts, and disturbed places. The breeding season for burrowing owl is April through August (*CDFW 2012*).

No burrowing owls or sign were observed during the biological reconnaissance, which included a thorough search for this species. However, there are three reported occurrences of burrowing owl in the CNDDB within 2.5-miles of the project site. These occurrences are generally located to the southeast in annual grassland habitat across US Highway 50 (*CDFW 2021*).

The non-native annual grassland and ruderal/disturbed habitat in the project site provides marginally suitable habitat for burrowing owl. There are several debris piles and small mammal burrows that provide elements of suitable habitat. The project site is too small in size to support significant burrowing owl foraging and is surrounded by disturbed industrial and residential parcels. The high levels of human
presence and disturbance in the project site likely discourage occupation of the project site by burrowing owls; however, there is a low potential for this species to occur in the project site.

If burrowing owls are residing in the project site or on adjacent properties, the project would have potential for adverse effects through injury or mortality, displacement, and loss of habitat. Injury or mortality to individual adults and young, or mortality of eggs and chicks due to forced nest abandonment by adults, would be a violation of the Fish and Game Code and a significant impact. Loss of occupied habitat including nesting burrows, satellite burrows, foraging habitat, dispersal habitat, wintering habitat, and linkages is considered a potentially significant impact to the local and regional populations of burrowing owl (CDFW 2012).

The recommended mitigation measures for nesting burrowing owl in the following section would reduce potential impacts to this species to less than significant.

White-tailed Kite

White-tailed kite is a year-round resident in coastal and valley lowlands, where it inhabits herbaceous and open stages of most habitat types. Individuals forage in grasslands, farmlands, and wetlands, preying mostly on small diurnal mammals. Nests are built near the top of dense tree stands, usually near open foraging areas (Zeiner et al. 1988).

No white-tailed kites were observed during the biological reconnaissance survey conducted for the proposed project. The nearest documented occurrence of white-tailed kite is 2.2-miles south in the City of Folsom (CDFW 2021).

The blue oak woodland habitat on and adjacent to the project site provides potential nesting habitat and the small patches of undeveloped grassland habitat in the vicinity provide suitable foraging habitat. This species is known to nest in tall trees in urban areas and forage in small habitat patches.

No adverse effects to white-tailed kite foraging are anticipated as a result of the loss of ruderal/disturbed habitat that would occur due to development of the proposed project. Non-breeding adults could readily avoid contact with construction equipment or personnel by moving out of the construction area. Displacement of non-breeding adults would not be a significant impact. The project has potential for adverse effects to white-tailed kite through nest disturbance leading to destruction of eggs or nestlings if this species were to nest in or adjacent to the project site. Eggs and young still dependent on the nest would be susceptible to injury or mortality through physical contact or through nest abandonment caused by displacement of adults. Destruction of eggs or young would be a violation of the Fish and Game Code and a significant impact.

The recommended mitigation measures for nesting migratory birds and raptors in the following section would reduce potential impacts to this species to less than significant.

Migratory Birds and Nesting Birds

As noted in the Regulatory Framework section, migratory and non-game birds are protected during the nesting season by California Fish and Game Code. The project site and immediate vicinity provides nesting and foraging habitat for a variety of native birds common to urbanized areas, such as mourning dove (*Zenaida macroura*), house finch (*Haemorhous mexicanus*), and acorn woodpecker (*Melanerpes*
formicivorus). Nests were not observed during surveys; however, a variety of migratory birds have the potential to nest in and adjacent to the project site, in trees, shrubs and on the ground in vegetation.

Project activities such as clearing and grubbing during the avian breeding season (February 1 through August 31) could result in injury or mortality of eggs and chicks directly through destruction or indirectly through forced nest abandonment due to noise and other disturbance. Needless destruction of nests, eggs, and chicks would be a violation of the Fish and Game Code and a significant impact.

The recommended mitigation measures for nesting migratory birds and raptors in the following section would reduce potential impacts to nesting migratory birds and raptors to less than significant.

Protected Trees

Data in this section is from an Arborist Report prepared by Arborwell Professional Tree Management in December 2020 and an arborist inventory conducted by HEL in November 2021. There are a total of 14 trees found on the project site; one tree (#702) is on Lot 1 and the remaining trees are on Lot 6. Nine of the trees are blue oaks, three are cork oaks, and two are valley oaks. The majority of trees are in excellent to fair condition and one tree (#705) is in critical/poor condition. Table 7 shows the details of all trees in the project site.

Table 7. Tree Inventory Details

<table>
<thead>
<tr>
<th>Tree #</th>
<th>Species</th>
<th>DSH (inches)</th>
<th>Condition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>702*</td>
<td>Blue Oak</td>
<td>41.1</td>
<td>4 - Good</td>
<td>Good shape, 2 Limb failures on southern side of tree, good structure. Appears to have minimal deadwood in lower part of canopy. May need to be raised up per plans for clearance.</td>
</tr>
<tr>
<td></td>
<td>Quercus douglasii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>703*</td>
<td>Blue Oak</td>
<td>30.4</td>
<td>3 - Fair</td>
<td>Appears to have minimal deadwood and good attachment at 6' high on trunk with 4 large limbs of attachment.</td>
</tr>
<tr>
<td></td>
<td>Quercus douglasii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>704*</td>
<td>Blue Oak</td>
<td>26.7</td>
<td>3 - Fair</td>
<td>Appears to have minimal deadwood, co-dominant at 6' with signs of included bark and V shaped crotch.</td>
</tr>
<tr>
<td></td>
<td>Quercus douglasii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>705*</td>
<td>Blue Oak</td>
<td>20</td>
<td>1 - Critical/Poor</td>
<td>Tree has poor structure with limb failure and is in severe decline.</td>
</tr>
<tr>
<td></td>
<td>Quercus douglasii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>706*</td>
<td>Blue Oak</td>
<td>19.4,</td>
<td>3 - Fair</td>
<td>Appears to have minimal deadwood, two trees at base, one to northwest is being overcrowd by one to southeast.</td>
</tr>
<tr>
<td></td>
<td>Quercus douglasii</td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>707*</td>
<td>Blue Oak</td>
<td>23.1</td>
<td>3 - Fair</td>
<td>Appears to have minimal deadwood, co-dominant leader at 6' with V shaped crotch.</td>
</tr>
<tr>
<td></td>
<td>Quercus douglasii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>708*</td>
<td>Blue Oak</td>
<td>23.1</td>
<td>3 - Fair</td>
<td>Appears to have minimal deadwood.</td>
</tr>
<tr>
<td></td>
<td>Quercus douglasii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>709*</td>
<td>Blue Oak</td>
<td>20.7</td>
<td>3 - Fair</td>
<td>Appears to have minimal deadwood. Large limb near base of trees has visual signs of included bark.</td>
</tr>
<tr>
<td></td>
<td>Quercus douglasii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>710*</td>
<td>Blue Oak</td>
<td>11.4,</td>
<td>3 - Fair</td>
<td>Appears to have minimal deadwood, poor structure with co-dominant leaders at base.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus douglasii</td>
<td>256**</td>
<td>Cork Oak</td>
<td>11.7</td>
<td>5- Excellent</td>
</tr>
<tr>
<td>Quercus suber</td>
<td>329**</td>
<td>Cork Oak</td>
<td>16</td>
<td>5-Excellent</td>
</tr>
<tr>
<td>Quercus suber</td>
<td>330**</td>
<td>Cork Oak</td>
<td>13.5</td>
<td>4 - Good</td>
</tr>
<tr>
<td>Quercus lobata</td>
<td>331**</td>
<td>Valley Oak</td>
<td>8.4</td>
<td>4 - Good</td>
</tr>
<tr>
<td>Quercus suber</td>
<td>332**</td>
<td>Valley Oak</td>
<td>9.6</td>
<td>5-Excellent</td>
</tr>
</tbody>
</table>

** Data collected by HELIX November 2021.
1Bold font indicates that a tree is protected

Eleven of the 14 trees in the study area are protected under the City of Folsom Tree Protection Ordinance, as they are native oaks and have a DSH greater than six-inches. Tree # 705 was recommended for removal due to its poor condition. Tree # 702 is considered to be a Heritage tree per City of Folsom and would be preserved on-site as part of the proposed project design. Three of the 14 trees in the study area are not protected (Trees # 256, 329, and 330) as they are not native oak species.

Jurisdictional Waters

There are no potentially jurisdictional waters of the U.S. or waters of the State on the project site. There is a small, constructed depression located on Lot 6 that appears to occasionally hold water. The constructed depression appears to be part of a larger stormwater management system that was constructed to collect runoff from the surrounding buildings, parking areas, and landscaped areas within the Folsom Corporate Center. The constructed depression receives stormwater runoff through a culvert outfall under the parking area/driveway to the south. The graded depression contains some wetland plants typical of disturbed areas but is not considered a potential waters of the U.S. or State because it was constructed on a graded pad in uplands for the purposes of managing stormwater drainage and is part of a currently functioning stormwater management system.

Wildlife Corridors

The project site is primarily surrounded by development with narrow bands of open space separating it from US Highway 50, Iron Point Road, Kaiser Permanente, and an office park. Lands north of Iron Point Road are densely developed, as are lands east of Kaiser Permanente and west of the office park; US Highway 50 is a 6-lane freeway. The project site represents an isolated island of open space with no connectivity to other suitable habitat and does not represent a significant wildlife movement corridor. Use of the site as a wildlife corridor is limited to movement of local wildlife. No native wildlife nursery sites would be affected.

Question a: Less than Significant with Mitigation Incorporated. No regionally occurring special-status plant species were identified as having the potential to occur in the project site, due to lack of suitable habitat. Therefore, impacts to special-status plant species are not anticipated as a result of the proposed project and no mitigation measures are necessary for special-status plants.
The project site provides potential marginal habitat for burrowing owl white-tailed kite and other nesting migratory birds. These species are discussed briefly below. Species determined to have no potential to occur in the project site or be impacted by the proposed project are not discussed further in this report.

Burrowing Owl

In the absence of proposed mitigation measures, potential adverse effects of the proposed project on burrowing owl could include harm to individual burrowing owls, nest disturbance/loss of occupied burrows, and loss of foraging habitat. Pre-construction surveys shall be conducted prior to project implementation to determine if burrowing owl are present on or adjacent to the project site, so that measures could be implemented if needed to avoid harming burrowing owl.

Mitigation Measure BIO-1: Avoid and Minimize Impacts to Burrowing Owl

Prior to the commencement of construction activities (which includes clearing, grubbing, or grading) a survey for burrowing owl shall be conducted by a qualified biologist. The survey shall occur within 30 days of the start of construction activities. Surveys shall be conducted in accordance with the following:

- A survey for active burrows and burrowing owls shall be conducted by walking through suitable habitat over the entire project site and in areas within 150-meters (~500-feet) of the project impact zone where accessible.

- Pedestrian survey transects shall be spaced to allow 100 percent visual coverage of the ground surface. The distance between transect center lines shall be no more than 30-meters (~100-feet) and shall be reduced to account for differences in terrain, vegetation density, and ground surface visibility. Surveyor(s) shall maintain a minimum distance of 50-meters (~160-feet) from any owls or occupied burrows. It is important to minimize disturbance near occupied burrows during all seasons.

- If no occupied burrows or burrowing owls are found in the survey area, a letter report documenting survey methods and findings shall be prepared and no further mitigation is necessary.

- If occupied burrows or burrowing owls are found, then a complete burrowing owl survey is required. This consists of a minimum of four site visits conducted on four separate days, which must also be consistent with the Survey Method, Weather Conditions, and Time of Day sections of Appendix D of the California Fish and Wildlife “Staff Report on Burrowing Owl Mitigation” (March 2012). A survey report shall be prepared that is consistent with the Survey Report section of Appendix D of the California Fish and Wildlife “Staff Report on Burrowing Owl Mitigation” (March 2012).

- If occupied burrows or burrowing owls are found, the applicant shall contact the City and consult with CDFW prior to construction and will be required to submit a Burrowing Owl Mitigation Plan (subject to the approval of the City and in consultation with California Fish and Wildlife). This plan must document all proposed measures, including avoidance, minimization, exclusion, relocation, or other measures, and include a plan to monitor mitigation success. The
CDFW “Staff Report on Burrowing Owl Mitigation” (March 2012) shall be used in the development of the mitigation plan.

White-tailed Kite, Other Raptors, and Migratory Birds

The project site provides suitable nesting habitat for native songbirds and large trees on and adjacent to the project site provide nesting habitat for white-tailed kite and other raptors. Removal of vegetation containing active nests would potentially result in destruction of eggs and/or chicks; noise, dust, and other anthropogenic stressors in the vicinity of an active nest could lead to forced nest abandonment and mortality of eggs and/or chicks. Needless destruction of eggs or chicks would be a violation of the Fish and Game Code and a significant impact. Pre-construction surveys shall be conducted prior to project implementation to determine if nesting birds are present on or adjacent to the project site, so that measures could be implemented if needed to avoid harming nesting birds.

The following mitigation measure shall be implemented to avoid and minimize adverse effects to nesting birds:

Mitigation Measure BIO-2: Avoid and Minimize Impacts to Nesting Birds

- If project (construction) ground-disturbing or vegetation clearing and grubbing activities commence during the avian breeding season (February 1 through August 31), a qualified biologist shall conduct a pre-construction nesting bird survey no more than 14 days prior to initiation of project activities and again immediately prior to construction. The survey area shall include suitable raptor nesting habitat within 500-feet of the project boundary (inaccessible areas outside of the project site can be surveyed from the site or from public roads using binoculars or spotting scopes). Pre-construction surveys are not required in areas where project activities have been continuous since prior to February 1, as determined by a qualified biologist. Areas that have been inactive for more than 14 days during the avian breeding season must be re-surveyed prior to resumption of project activities. If no active nests are identified, no further mitigation is required. If active nests are identified, the following measure is required:

 o A suitable buffer (e.g., typically 300-500-feet for raptors; and 50-100-feet for passerines) shall be established by a qualified biologist around active nests and no construction activities within the buffer shall be allowed until a qualified biologist has determined that the nest is no longer active (i.e., the nestlings have fledged and are no longer reliant on the nest, or the nest has failed). Encroachment into the buffer may occur at the discretion of a qualified biologist. Any encroachment into the buffer shall be monitored by a qualified biologist to determine whether nesting birds are being impacted.

With implementation of the above mitigation measures, potential impacts to special-status species and nesting birds would be less than significant and no additional mitigation measures would be required.

Question b: No Impact. There are no riparian habitats or other sensitive natural communities in the project site. Therefore, no impact would occur.

Question c: No Impact. There are no potential wetlands or other waters of the U.S. or waters of the State in the project site. Therefore, no impact would occur.
Question d: Less Than Significant Impact. The project would result in a less than significant impact to the movement of native resident wildlife or the use of native wildlife nursery sites, and no mitigation necessary.

Question e: Less than significant with Mitigation Incorporated. A total of 14 trees are found on the project site; one tree (#702) is on Lot 1 and the remaining trees are on Lot 6. Eleven of the 14 trees in the study area are protected under the City of Folsom Tree Protection Ordinance, as they are native oaks and have a DSH greater than six-inches. Tree # 705 was recommended for removal due to its poor condition. Tree # 702 is considered to be a Heritage tree per City of Folsom and will be preserved on-site as part of the proposed project design. Three of the 14 trees in the study area are not protected (Trees # 256, 329, and 330) as they are not native oak species.

Removal of protected trees requires a tree removal permit from the City of Folsom. Mitigation for tree removal includes on- or off-site replacement, payment of in-lieu fees, or credit for preservation of existing trees. Tree replacement shall be done at a ratio of one-inch DSH of tree replaced for each inch DSH of tree removed (1:1 ratio). The replacement value of planted trees is as follows:

- Sapling tree = 0.5-inch DSH
- Tree in container less than 15-gallon = 0.5-inch DSH
- A tree in a 15-gallon container = one-inch DSH.
- A tree in a 24-inch box = two-inch DSH.
- A tree in a 36-inch box or larger = three-inch DSH.

Preserved trees are eligible for a Tree Preservation Credit where a credit of 0.5-inch would be given for every one inch preserved. Mitigation for Tree #705 should not be required, due to its poor condition. Tree Preservation Credit should be given for the conservation of Tree #702, which has a DSH of 41.1-inches and results in a credit of 20.5-inches. The mitigation required for impacts to the remaining trees totals to 181-inches.

The following mitigation measure would be implemented to avoid and minimize impacts to protected trees:

Mitigation Measure BIO-3: Tree Permit

- A Tree Permit Application containing an application form, tree protection and mitigation plan, and arborist report shall be submitted to the City of Folsom by the owner/applicant for issuance of a Tree Work Permit and Tree Removal Permit prior to commencement of any grading or site improvement activities. The tree protection and mitigation plan shall be prepared in collaboration with a qualified arborist and shall be subject to review and approval by the City. The tree protection and mitigation plan shall contain the contact information of the project arborist and shall be included in all associated plan sets for the project.

- Removal of any protected tree shall be mitigated by planting replacement trees and/or payment of "In-Lieu" fees on a diameter inch basis in accordance with FMC 12.16.150. The proposed method of mitigation shall be subject to review and approval by the City.
• Prior to starting construction, oak trees to be preserved shall be fenced with high visibility fencing consistent with the city-approved tree protection and mitigation plan. Parking of vehicles, equipment, or storage of materials is prohibited within the Tree Protection Zone of Protected Trees at all times. Signs shall be posted on exclusion fencing stating that the enclosed trees are to be preserved. Signs shall state the penalty for damage to, or removal of, the protected tree.

• The owner/applicant shall retain the services of a project arborist for the duration of the development project to monitor the health of oak trees to be preserved and carry out the City-approved tree protection plan. All regulated activity conducted within the Critical Root Zone of protected trees, as that term is defined in Folsom Municipal Code (FMC) 12.16.020, shall be performed under the direct supervision of the project arborist. A copy of the executed contract for these arboricultural services shall be submitted to the City prior to the issuance of any tree or grading permits.

• Certification letters by the project arborist attesting compliance with the tree protection and mitigation plan and tree permit conditions shall be submitted to the City at the following stages of the project:
 o Following completion of grading, prior to issuance of any building permits
 o At the time of the final inspection, prior to the Certificate of Occupancy

Question f: No Impact. No Habitat Conservation Plan, Natural Community Conservation Plan, or other local, regional, or state habitat conservation plan has been approved for the City of Folsom. Therefore, no impacts to an existing adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan would occur, and no mitigation is necessary.
V. CULTURAL RESOURCES

<table>
<thead>
<tr>
<th>CULTURAL RESOURCES: Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Impact</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Disturb any human remains, including those interred outside of formal cemeteries?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cultural resource evaluations prepared for the proposed project have been incorporated by reference and are presented in their entirety in Appendix D.

Environmental Setting

State and federal legislation requires the protection of historical and cultural resources. In 1971, President’s Executive Order No. 11593 required that all federal agencies initiate procedures to preserve and maintain cultural resources by nomination and inclusion on the National Register of Historic Places. In 1980, the Governor’s Executive Order No. B-64-80 required that state agencies inventory all “significant historic and cultural sites, structures, and objects under their jurisdiction which are over 50 years of age and which may qualify for listing on the National Register of Historic Places.” Section 15064.5(b)(1) of the CEQA Guidelines specifies that projects that cause “...physical demolition, destruction, relocation, or alteration of the resource or its immediate surroundings such that the significance of an historic resource would be materially impaired” shall be found to have a significant impact on the environment. For the purposes of CEQA, an historical resource is a resource listed in, or determined eligible for listing in the California Register of Historical Resources. When a project could impact a resource, it must be determined whether the resource is an historical resource, which is defined as a resource that:

(A) is historically or archaeologically significant, or is significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political or cultural annals of California; and,

(B) Meets any of the following criteria: 1) is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage; 2) is associated with the lives of persons important in our past; 3) embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or 4) has yielded, or may be likely to yield, information important in prehistory or history. The City of Folsom Standard Construction Specifications were developed and approved by the City of Folsom in May 2004 and updated in December 2014. They include Article 11 - Cultural Resources, which provides direction on
actions to be taken in the event that materials are discovered that may ultimately be identified as a historical or archaeological resource, or human remains (City of Folsom 2014).

Record Searches and Pedestrian Survey Results

This section describes the existing cultural resource setting and potential effects from project implementation on the project site and its surrounding area. The results are based on a record search conducted at the North Central Information Center on September 23, 2021 and a pedestrian field survey conducted on November 3, 2021. This section assesses potential impacts related to historic resources, archaeological resources, and human remains.

North Central Information Center Record Search

To determine the presence of cultural and historical resources within the project area and a 0.25-mile radius, a record search was conducted at the North Central Information Center (NCIC) on September 23, 2021. The record search included a review of National Register of Historic Places (NR), the California Register of Historic Resources (CRHR), the California Historical Landmarks (CHL) list, the California Points of Historical Interest list, the California State Historic Resources Inventory (HRI) listings for Sacramento County, and the Archaeological Determinations of Eligibility (ADOE). Historic maps were also examined to gain insights into past developments and changes within the project area and its surroundings.

The NCIC results indicate that 53 historic resources have been recorded within the 0.25-mile search radius; six resources were recorded as potentially occurring within the project area. The 53 historic resources are primarily scattered debris, ditches, and metal remnants from the Folsom Mining District and the Prairie Diggings Placer Mining District. The 53 historic Resources are outlined in Table 8.

Table 8. Previously Documented Resources within the Study Area

<table>
<thead>
<tr>
<th>Primary</th>
<th>Trinomial</th>
<th>Year</th>
<th>Author(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-34-000335</td>
<td>CA-SAC-000308H</td>
<td>1995</td>
<td>Flint, S.</td>
<td>Historic- the Folsom Mining District</td>
</tr>
<tr>
<td>P-34-001480</td>
<td>CA-SAC-000903H</td>
<td>2005</td>
<td>Jensen, Sean Michael and Rob McCann</td>
<td>Historic- Segment of the Rhoads' Branch Ditch</td>
</tr>
<tr>
<td>P-34-002195</td>
<td>None</td>
<td>2008</td>
<td>Westwood, Lisa</td>
<td>Historic- 1940s era Transmission Line</td>
</tr>
<tr>
<td>P-34-002292</td>
<td>None</td>
<td>1994</td>
<td>Doughtery, John and David Davis</td>
<td>Historic- Placer mining landscape</td>
</tr>
<tr>
<td>P-34-002306</td>
<td>None</td>
<td>1994</td>
<td>Lindstrom, Susan, Judy D. Tordoff, and Daryl G. Noble</td>
<td>Historic- the Prairie Diggings Placer Mining District</td>
</tr>
<tr>
<td>P-34-004518</td>
<td>None</td>
<td>2012</td>
<td>Crawford, K. A.</td>
<td>Historic- mid-20th century lattice tower/ part of transmission line</td>
</tr>
<tr>
<td>P-34-000461</td>
<td>CA-SAC-000434H</td>
<td>1989</td>
<td>Shapiro, William A.</td>
<td>Historic- Natomas Ditch- water conveyance system</td>
</tr>
<tr>
<td>P-34-000648</td>
<td>CA-SAC-000524</td>
<td>1990</td>
<td>Derr, Eleanor H. and John Dougherty</td>
<td>Prehistoric- lithic scatter and bedrock milling feature</td>
</tr>
<tr>
<td>P-34-000767</td>
<td>CA-SAC-000589H</td>
<td>1990</td>
<td>Derr, Eleanor H. and John Dougherty</td>
<td>Historic- debris scatter, contributing element to district 34-000335</td>
</tr>
<tr>
<td>P-34-000768</td>
<td>CA-SAC-000590H</td>
<td>1990</td>
<td>Derr, Eleanor H. and John Dougherty</td>
<td>Historic- mining camp contributing element to district 34-000335</td>
</tr>
<tr>
<td>P-34-000769</td>
<td>CA-SAC-000591H</td>
<td>1990</td>
<td>Derr, Eleanor H. and Ken McIvers</td>
<td>Historic- mining camp contributing element to district 34-000335</td>
</tr>
<tr>
<td>P-34-000770</td>
<td>CA-SAC-000592H</td>
<td>1990</td>
<td>Derr, Eleanor H. and Ken McIvers</td>
<td>Historic- mining camp contributing element to district 34-000335</td>
</tr>
<tr>
<td>Primary</td>
<td>Trinomial</td>
<td>Year</td>
<td>Author(s)</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>P-34-000774</td>
<td>CA-SAC-000596H</td>
<td>1990</td>
<td>Derr, Eleanor H. and Ken McIvers</td>
<td>Prehistoric- lithic scatter and Historic- mining camp and mines/quarries/tailings contributing element to district 34-000335</td>
</tr>
<tr>
<td>P-34-000775</td>
<td>CA-SAC-000597H</td>
<td>1990</td>
<td>Derr, Eleanor H. and Ken McIvers</td>
<td>Historic- remains of shed</td>
</tr>
<tr>
<td>P-34-000776</td>
<td>CA-SAC-000598H</td>
<td>1990</td>
<td>Derr, Eleanor H. and Ken McIvers</td>
<td>Historic- The Russ Place –foundations, privies and trash scatters, and farm/ranch</td>
</tr>
<tr>
<td>P-34-000777</td>
<td>CA-SAC-000599H</td>
<td>1990</td>
<td>Derr, Eleanor H. and Ken McIvers</td>
<td>Historic- well/cistern</td>
</tr>
<tr>
<td>P-34-000780</td>
<td>CA-SAC-000602H</td>
<td>1994</td>
<td>D., JW and ET</td>
<td>Historic- stone fence</td>
</tr>
<tr>
<td>P-34-000783</td>
<td>CA-SAC-000605H</td>
<td>1990</td>
<td>Derr, Eleanor H.</td>
<td>Historic- stone fence</td>
</tr>
<tr>
<td>P-34-000784</td>
<td>CA-SAC-000605H</td>
<td>1990</td>
<td>Derr, Eleanor H. and Ken McIvers</td>
<td>Historic- privy/dump/trash scatter</td>
</tr>
<tr>
<td>P-34-000789</td>
<td>None</td>
<td>1990</td>
<td>Derr, Eleanor H.</td>
<td>Historic- piece of chimney</td>
</tr>
<tr>
<td>P-34-000790</td>
<td>None</td>
<td>2012</td>
<td>Pappas, S., and D. Quivey</td>
<td>Historic- metal drum</td>
</tr>
<tr>
<td>P-34-001765</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- wall</td>
</tr>
<tr>
<td>P-34-001771</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- trash scatter, mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-001774</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-001775</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- roads/trails/railroad grade</td>
</tr>
<tr>
<td>P-34-001776</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- water conveyance system</td>
</tr>
<tr>
<td>P-34-001777</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-001778</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-001782</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-001795</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-001798</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-001799</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- prospect pits</td>
</tr>
<tr>
<td>P-34-001800</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-001801</td>
<td>CA-SAC-001019H</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- foundations/structure pads</td>
</tr>
<tr>
<td>P-34-001802</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- roads/trails/railroad grades</td>
</tr>
<tr>
<td>P-34-001803</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-001807</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- water conveyance system</td>
</tr>
<tr>
<td>P-34-001820</td>
<td>CA-SAC-001020H</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- foundations/structure pads</td>
</tr>
<tr>
<td>P-34-001926</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- drains, dams, mines/quarries/tailings, and ponds</td>
</tr>
<tr>
<td>P-34-002087</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings, part of Historic Mining landscape</td>
</tr>
<tr>
<td>P-34-002088</td>
<td>CA-SAC-001085H</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- foundations/structure pads</td>
</tr>
<tr>
<td>P-34-002089</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- prospect pits</td>
</tr>
<tr>
<td>P-34-002090</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- concrete and metal debris</td>
</tr>
<tr>
<td>P-34-002091</td>
<td>None</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Historic- mines/quarries/tailings</td>
</tr>
<tr>
<td>P-34-002287</td>
<td>None</td>
<td>1990</td>
<td>Derr, Eleanor H.</td>
<td>Historic- mines/quarries/tailings, contributing element to district 34-000335</td>
</tr>
<tr>
<td>P-34-002288</td>
<td>None</td>
<td>1990</td>
<td>Derr, Eleanor H. and Randy Bethard</td>
<td>Historic- pick head embedded in quartz, element of district 34-000335</td>
</tr>
<tr>
<td>P-34-002291</td>
<td>None</td>
<td>1990</td>
<td>Dougherty, John and David Davis</td>
<td>Historic- mines/quarries/tailings, element of district 34-000335</td>
</tr>
<tr>
<td>P-34-002293</td>
<td>None</td>
<td>1990</td>
<td>Dougherty, John and David Davis</td>
<td>Historic- mines/quarries/tailings and water conveyance system, element of district 34-000335</td>
</tr>
<tr>
<td>P-34-002294</td>
<td>None</td>
<td>1994</td>
<td>Teixera, Emanuel and John</td>
<td>Historic- mines/quarries/tailings – mining landscape, element of district 34-000335</td>
</tr>
</tbody>
</table>
The first resource identified, the Folsom Mining District (P-34-000335), was recorded as a variety of elements from the region’s historic mining period, including mines, quarries, tailings, mining equipment, habitation sites, roads, railroad grades, water conveyances, and structural foundations. The results of HELIX’s NCIC records search indicated that elements of this historic district could be present within both lots of the currently proposed Area of Potential Impact (APE). Records indicate that the Folsom Mining District taken as a unified entity has been determined to be ineligible for listing on the NRHP and CRHR, but that individual elements within the district may be eligible for listing and that they should be evaluated as eligible or ineligible on a case-by-case basis. This resource was first recorded in 1995 by Sandy Flint.

The second resource identified on the project site is known as the Rhoades Branch Ditch (P-34-001480). The results of HELIX’s NCIC records search indicated that elements of this ditch system could be present within the current APE’s Lot 6. The ditch was used for supplying water to most of the mined areas south of Alder Creek, east of Prairie City, and south of the Willow Hill diggings. Since its initial recordation this resource has been incorporated as an element of the American River Placer Mining District, now also known as the Folsom Mining District (P-34-000335). As of the time of ECORP Consulting Inc.’s 2013 survey, the resource is believed to be heavily disturbed from the construction of houses, roads and associated facilities, though portions of the ditch may still be in good condition. NRHP and CRHR eligibility have not been determined for this resource.

The third resource, first recorded in 2008 by Lisa Westwood, this resource is a 1940s-era transmission line that extends from Halsey to Newark. It is composed of metal towers and situated directly east of, and parallel to, two higher capacity, modern transmission lines that bisect the current APE’s Lot 1. Built in the early 1940s, the line is now named the Gold Hill-Bellota-Lockford 115kV line. According to maintenance logs on file with PG&E, the line was upgraded in conjunction with the construction of the Gold Hill Substation in 1963, and again in 1975 and 1983. This resource has been determined ineligible for listing on the NRHP and CRHR. Most recently revisited in 2017 by ECORP Consulting Inc. archaeologists, the resource is considered to be in good condition.

The fourth resource was first recorded in 1994 by John Dougherty and David Davis, this site consists of a placer mine located approximately 10-meters north of US Highway 50, along an ephemeral northwest flowing drainage. NCIC maps show the site as intersecting Lot 1’s southeast border. This site is considered an element of the Folsom Mining District (P-34-000335), and it abuts several other resources which are also part of the District, including other mining-related ground disturbances, mining camps,
and historic debris piles associated with mining activities. P-34-002292's NRHP and CRHR eligibility has not been determined.

The fifth resource, first recorded in 1994 by Susan Lindstrom, Judy D. Tordoff, and Daryl G. Noble, this site represents the Prairie Diggings Placer Mining District which contains 35 loci of nineteenth century cultural resources pertaining to mining activities and mining camp occupations. These resources include examples of early shallow placer mines; evidence of ground sluicing, drift mining, low-pressure hydraulic mining, and dry land dredging activities; water conveyances; and artifacts and landscape features associated with mining camp operations including personal effects, mining equipment, hearths and roads. The district encompasses approximately 302-acres and represents one of the mining areas within Prairie City's sphere of influence in the 1850s and 60s. The district is situated north of Alder Creek and largely east of Prairie City Road, with Willow Hill Reservoir in its western arm, and it includes the current APE's Lot 1 within its boundaries. As the result of development in the area, the district has suffered significant losses to its site integrity and has been determined ineligible for inclusion on the NRHP and CRHR as of 2014.

The sixth resource, first recorded in 2012 by K.A. Crawford, this site consists of a steel lattice transmission tower located in a large parking lot area in the City of Folsom, immediately adjacent to the current APE's Lot 1. The base of the tower was installed by the Pacific Gas and Electric Company prior to 1967 as part of their expansion of electrical services in the Folsom area. The tower was constructed with bolted steel L-shaped profiles, and as of its recording in 2012 was still in good condition. At the time the tower was also noted as retaining its structural and historic integrity because it had not been significantly altered since its original construction. This resource has been determined ineligible for listing on the NRHP.

A total of 23 reports have been prepared within the search radius, six of which included the project area. These previous reports are outlined in Table 9.

Table 9. Previous Studies Conducted within the Study Area

<table>
<thead>
<tr>
<th>Report</th>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>003925</td>
<td>1990</td>
<td>Derr, Eleanor</td>
<td>The Broadstone Master Plan Project: Final Report</td>
<td>Cultural Resources Unlimited</td>
</tr>
<tr>
<td>004520</td>
<td>1992</td>
<td>Manery, Mary</td>
<td>Historic Survey Report and Historic Resource Evaluation Report for Sixteen Sites, Highway 50 Interchange Project Post Mile 18.8 TO 23.1, Sacramento County, California</td>
<td>PAR Environmental Services, Inc</td>
</tr>
<tr>
<td>011136</td>
<td>2012</td>
<td>Billat, Lorna</td>
<td>Collocation ("CO") Submission Packet FCC Form 621</td>
<td>EarthTouch, Inc</td>
</tr>
<tr>
<td>011161</td>
<td>2012</td>
<td>Crawford, Carrie</td>
<td>Direct APE Historic Architectural Assessment for T-Mobile West, LLC Candidate SC06934A (HWY 50 - Scott Road), 2155 Iron Road, Folsom, Sacramento County, California</td>
<td>Michael Brandman Associates</td>
</tr>
<tr>
<td>011164</td>
<td>2012</td>
<td>Wills, Carrie</td>
<td>Cultural Resources Records Search and Site Visit Results for T-Mobile West, LLC Candidate SC06934A (Hwy 50 - Scott Road), 2155 Iron Point Road, Folsom, Sacramento County, California</td>
<td>Michael Brandman Associates</td>
</tr>
<tr>
<td>011632</td>
<td>2014</td>
<td>Pierce, Wendy</td>
<td>Willow Hill Reservoir Trail Project, Cultural Resource Inventory, City of Folsom, Sacramento</td>
<td>Pierce Archaeological Consulting</td>
</tr>
<tr>
<td>003840</td>
<td>1994</td>
<td>Tordoff, Judy</td>
<td>Proposed Interchange and Auxiliary Lanes Highway 50</td>
<td>Caltrans</td>
</tr>
<tr>
<td>004521</td>
<td>1994</td>
<td>Novle, Daryl G.</td>
<td>Historic Property Survey Report for a Proposed Interchange and Auxiliary Lanes on Highway 50 in Eastern Sacramento County, California 03-SAC-50 P.M. 17/1/20.1 03101-394500</td>
<td>State of California, Department of Transportation District 3</td>
</tr>
<tr>
<td>Report</td>
<td>Year</td>
<td>Author(s)</td>
<td>Title</td>
<td>Affiliation</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>004525</td>
<td>1991</td>
<td>Maniery, Mary</td>
<td>Archaeological Survey Report for the Highway 50 Interchange Project, Post Mile 15.6 to Post Mile 23.1, Sacramento County, California</td>
<td>PAR Environmental Services</td>
</tr>
<tr>
<td>007121</td>
<td>2004</td>
<td>Clark, Matthew</td>
<td>The Status of Cultural Resources Research for the Kaiser Folsom Project Area in the City of Folsom, Sacramento County, CA</td>
<td>None Listed</td>
</tr>
<tr>
<td>008736</td>
<td>2006</td>
<td>Windmiller, Ric</td>
<td>Carpenter Ranch Cultural Resources Inventory, Folsom, Sacramento County, California</td>
<td>Consulting Archaeologist</td>
</tr>
<tr>
<td>009579</td>
<td>2008</td>
<td>Losee, Carolyn</td>
<td>Submission Packet, FCC Form 621, for existing Telecommunications Facility, Folsom AT&T</td>
<td>Professional Archaeologist</td>
</tr>
<tr>
<td>011408</td>
<td>2012</td>
<td>Westwood, Lisa, Katherine Knapp, Stephen Pappas, David Quivey, and Roger Mason</td>
<td>Cultural Resources Testing and Evaluation Report for the Carpenter Ranch Permit Area, Folsom South of U.S. Highway 50 Specific Plan Project; Cultural Resources Inventory Report for the Carpenter Ranch APE within the Folsom South of Highway 50 Specific Plan</td>
<td>ECORP Consulting, Inc.</td>
</tr>
<tr>
<td>011728</td>
<td>2014</td>
<td>Westwood, Lisa</td>
<td>Historic Property Treatment Plan for the Non-Backbone Prairie City Road Business Park Permit Area, Folsom South of U.S. Highway 50 Specific Plan Project Sacramento County, California</td>
<td>ECORP Consulting, Inc.</td>
</tr>
<tr>
<td>012088</td>
<td>2015</td>
<td>Westwood, Lisa and Katherine Knapp</td>
<td>Historic Property Treatment for the Non-Backbone Prairie City Road Business Park Permit Area, Folsom South of U.S. Highway 50 Specific Plan Project, Sacramento County, California (ECORP Project No. 2009-168.8)</td>
<td>ECORP Consulting, Inc.</td>
</tr>
<tr>
<td>012419</td>
<td>2013</td>
<td>Knapp, Katherine and Lisa Westwood</td>
<td>Historic Property Treatment Plan for the Backbone Infrastructure Permit Area, Folsom South of U.S. Highway 50 Specific Plan Project, Sacramento County, California</td>
<td>ECORP Consulting, Inc.</td>
</tr>
<tr>
<td>012520</td>
<td>2016</td>
<td>Westwood, Lisa</td>
<td>Cultural Resources Inventory Update for the 2.72-acre Broadstone Oaks Crossing APE Within the Broadstone Master Plan Project Area, ECORP Project No. 2015-049</td>
<td>ECORP Consulting, Inc.</td>
</tr>
</tbody>
</table>
Pedestrian Survey

On November 3, 2021, HELIX Senior Archaeologist Clarus Backes R.P.A, conducted a pedestrian survey to characterize any prehistoric or historic-era archaeological resources located on the surface of the Area of Potential Effects (APE). During the survey, the ground surface throughout both parcels of the APE were examined for the presence of historic-era artifacts (e.g., metal, glass, ceramics), prehistoric artifacts (e.g., flaked stone tools, tool-making debris), and other features that might represent human activity that took place more than 50 years ago. Further, a concerted effort was made to locate the six cultural resources identified during the NCIC records search as lying within or adjacent to the current APE. Representative photographs taken during the survey are presented in Appendix D. The surveys of each individual lot (Lot 1 and Lot 6) are presented separately below.

Lot 1

Lot 1’s ground surface can be characterized as slightly undulating, with a gradual (5-10 percent) slope downhill to the southwest (Photos 1 and 2). There is also a short, steep downslope from Lot 1’s northeastern boundary north towards the nearby medical center parking lot (Photo 3). The entire Lot was found to be covered with dense, nonnative grasses approximately 24-inches high, and as a result surface visibility for the pedestrian survey was very poor (less than five percent visibility). Ground soils that were visible, however, proved to be brownish-red sandy silt with large pebbles and small cobble inclusions that are angular and granitic. There were also loose, large quartz cobbles and small boulders scattered throughout the area.

Overall, the area showed signs of moderate ground disturbance, with recent tire tracks crossing the Lot from all directions. There were also several small borrow pits and push piles, as well as several small concentrations of broken asphalt and rounded river cobbles that appear to have been brought in from off-site (Photos 4 and 5). Further, at the time of survey, the entire Lot was covered with a thin scatter of modern roadside debris.

Five cultural resources identified during the NCIC records search were found lying within or adjacent to Lot 1. They are as follows: P-34-000335, P-34-022195, P-34-002292, P-34-002306 and P-34-004518. The pedestrian survey revealed that no elements or cultural resources that could be associated with the historic Folsom Mining District (P-34-000335), the Prairie Diggings Placer Mining District (P-34-002306), or the mining feature listed as an element of the Folsom Mining District (P-34-002292). Cultural resource P-34-022195 is a 1940s era lattice metal tower. HELIX’s pedestrian survey did not encounter any evidence of that mining feature within Lot 1. P-34-004518 is a mid-twentieth century metal lattice transmission tower. HELIX’s pedestrian survey of Lot 1 encountered this resource and noted that there had been no significant changes to its condition or character since its initial recordation by archaeologist K.A. Crawford in 2012.

Lot 6

Lot 6’s ground surface gently rises from the northeast to the southwest through a series of low artificial terraces (Photo 7). The lot is covered with dense nonnative grasses, though they were shorter than those found on Lot 1, allowing for slightly better ground surface visibility (a little less than 10 percent). There is also a small stand of oak trees in the lot’s southwest corner (Photo 8). A few disturbed areas within the lot exposed bare soils which proved to be brown sandy silt with angular large pebbles and small cobbles, and include concentrations of gray and red silt. Overall, Lot 6 is considerably more disturbed than Lot 1, with tire tracks, small, graded areas, and push piles visible throughout the survey.
area. In addition, along the lot’s northeastern boundary there is a 69- meter long, 18-meter wide concentration of push piles and large granitic boulders (Photo 9). These piles also contained broken up fragments of reinforced concrete. It is unclear whether these boulders originated from within the lot, or if they were imported from off-site, but in either case it is clear they are not in their original placements.

Lot 6 also exhibited a thin scatter of industrial debris across the survey area including scrap metal, plastic fragments, and pipe fragments. None of this debris, however, appeared to be indicative of activities taking place on the site more than 45 years ago.

Near the center of the lot is a small, graded depression used as a stormwater control basin. This basin, which was seen holding standing water at the time of the survey, is fed by a small culvert that runs from the Folsom Corporate Center to the south. A ditch extends from this stormwater basin for approximately 40-meters. Together these elements appear to function as a modern water-control feature, rather than one of the historic ditches that have been documented by previous studies in the project vicinity. Two cultural resources identified during the NCIC records search were identified lying within or adjacent to Lot 6. These resources are P-34-000335 and P-34-001480. The pedestrian survey revealed that no elements or cultural resources that could be associated with this historic district (P-34-000335) or historic ditch (P-34-001480) are located on the ground surface of Lot 6.

Evaluation of Cultural Resources

Question a: Less than Significant. Review of historic topographic maps (dating from 1911 to 1975) and historic aerial photographs (dating 1952 to 2018) indicate that Lots 1 and 6 have not undergone any formal development between 1952 and 2018. Characterized during these periods as undulating grassy fields with moderate to sparsely populated oak stands, only tree clearing and dirt road construction activities were made apparent within the APE during HELIX’s historic maps and images review, with those activities spanning only between 2002 and 2018. Of the six previously recorded resources that are indicated by the NCIC as potentially lying within or adjacent to the current APE, only two were encountered during HELIX’s survey. These include P-34-002195 and P-34-004518, two metal lattice towers constructed for use in electrical transmission lines during the mid-20th century. The proposed project is not anticipated to have impacts on either of these two resources. Although NCIC records indicate that site P-34-002292 might lie within the currently proposed APE, the only traces of historic mining activity spotted during HELIX’s pedestrian survey consisted of placer mining spoil piles which lie to the southwest of Lot 1 and outside of the project’s APE. Consequently, the current project is not anticipated to impact this resource.

In the event that cultural resources are exposed during any future ground-disturbing activities, construction activities should be halted in the immediate vicinity of the discovery. If the site cannot be avoided during the remainder of the construction, an archaeologist who meets the Secretary of the Interior’s Professional Qualifications Standards should then be retained to evaluate the find’s significance under CRHR criteria. If the discovery proves to be significant, additional work, such as data recovery excavation, may be warranted and should be discussed in consultation with the County. With implementation of this guideline, and with consideration that no historic resources are anticipated to be impacted by the project, impacts would be less than significant.

Question b: Less than Significant with Mitigation. On November 2, 2021, HELIX requested that the NAHC conduct a search of their SLF for the presence of Native American sacred sites or human remains in the vicinity of the proposed project area. HELIX received a response from NAHC on November 16,
2021, which reported that the SLF search results were negative. However, it is possible that subsurface excavation activities may encounter previously undocumented archaeological resources. The implementation of standard cultural resource construction mitigation (Mitigation Measure CUL-1) would ensure that this impact is less than significant.

Mitigation Measure CUL-1: Avoid and minimize impacts to previously unknown archaeological resources.

It is always possible that ground-disturbing activities during project development may uncover previously unknown archaeological resources. In the event that archaeological resources are discovered during construction, construction operations shall stop within a 100-foot radius of the find and a qualified archaeologist shall be consulted to determine whether the resource requires further study. The City shall include a standard inadvertent discovery clause in every construction contract to inform contractors of this requirement. The archaeologist shall make recommendations concerning appropriate measures that will be implemented to protect the resources, including but not limited to, excavation and evaluation of the finds in accordance with Section 15064.5 of the CEQA Guidelines. Archaeological resources could consist of, but are not limited to, stone, bone, wood, or shell artifacts or features, including hearths. Any previously undiscovered resources found during construction within the project area should be recorded on appropriate Department of Parks and Recreation (DPR) 523 forms and evaluated for significance in terms of CEQA criteria.

Question C: No Impact. The proposed project area is not located in an area that is considered likely to have paleontological resources present. Paleontological resources (fossils) are remains an/or traces of prehistoric life. Fossils are typically preserved in layered sedimentary rocks, and the distribution of fossils is a result of the sedimentary historic of the geologic units within which they occur.

Question D: Less than Significant with Mitigation. No human remains are known to exist within the project area, and there were no indications of human remains found during the field survey. However, there is always the possibility that subsurface construction activities associated with the proposed project, such as trenching and grading, could potentially damage or destroy previously undiscovered human remains. Accordingly, this implementation of Mitigation Measure CUL-2 would reduce this potential impact to a less than significant level.

Mitigation Measure CUL-2: Avoid and minimize impacts related to accidental discovery of human remains.

In the event of the accidental discovery or recognition of any human remains, CEQA Guidelines § 15064.5; Health and Safety Code § 7050.5; Public Resources Code § 5097.94 and § 5097.98 must be followed. If during the course of project development there is accidental discovery or recognition of any human remains, the following steps shall be taken:

1. There shall be no further excavation or disturbance within a 100-foot radius of the potentially human remains until the County Coroner is contacted to determine if the remains are Native American and if an investigation of the cause of death is required. If the coroner determines the remains to be Native American, the coroner shall contact the Native American Heritage Commission (NAHC) within 24 hours, and the NAHC shall identify the person or persons it believes to be the “most likely descendant” (MLD) of the deceased Native American. The MLD may make recommendations to the landowner or the person responsible for the excavation.
work within 48 hours, for means of treating or disposing of, with appropriate dignity, the human remains and any associated grave goods as provided in PRC Section 5097.98.

2. Where the following conditions occur, the landowner or his authorized representative shall rebury the Native American human remains and associated grave goods with appropriate dignity either in accordance with the recommendations of the most likely descendant or on the project site in a location not subject to further subsurface disturbance:

 o The NAHC is unable to identify a most likely descendent or the most likely descendent failed to make a recommendation within 48 hours after being notified by the commission.

 o The descendant identified fails to make a recommendation.

 o The landowner or his authorized representative rejects the recommendation of the descendant, and mediation by the NAHC fails to provide measures acceptable to the landowner.
VI. GEOLOGY AND SOILS

<table>
<thead>
<tr>
<th>GEOLOGY AND SOILS:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>ii. Strong seismic ground shaking?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>iii. Seismic-related ground failure, including liquefaction?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>iv. Landslides?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

The following discussion is based in part on the approach, methodology, results, and conclusions outlined in a geotechnical investigation report prepared by Geocon Consultants, Inc. (Geocon 2017). The geotechnical report was prepared for a project located adjacent to Lot 1, and its description of the environmental setting and geographic landscape of the area is used in the following analysis, and is included as Appendix E. A NRCS soil report was also prepared, specific to this project (NRCS 2021).

Environmental Setting

Geology

The project area is at the base of the western Sierra Nevada foothills and is underlain by metamorphic rocks. Site geology consists of existing fill within the northern portion of the site north of the pond and Jurassic-age Gopher Ridge Volcanics (Jgo) and Salt Springs Slate bedrock (Jss) (Geocon Consulting 2018).

The Foothill fault system is located along the western slope of the Sierra Nevada which is the nearest source of seismic activity to the project site. The Bear Mountain Fault, four miles east of Folsom, is a
potentially active trace of the Foothills fault system (CDC 2018b). Although historic seismic activity has been minor along this fault, the potential for strong ground shaking is present. An earthquake on the Bear Mountain fault could cause bedrock accelerations up to 0.35 g (acceleration of gravity).

The State Division of Mines and Geology has published a map of maximum potential earthquake intensities for California. The project area is within seismic risk Zone 3 (State Division of Mines and Geology 2015). A maximum credible earthquake (Richter scale magnitude 6.5) on the Bear Mountain Fault could cause ground shaking of modified Mercalli scale intensity VII or greater, and subsequently cause major damage to structures and injury to people (Folsom, USBR 1992).

The Alquist-Priolo Earthquake Fault Zone Act was passed in 1972 to mitigate the hazard of surface faulting to structures designed for human occupancy. The purpose of the Act is to prevent the construction of buildings used for human occupancy on the surface trace of active faults. No active or potentially active faults are located within the project site or in the project vicinity as mapped under the Act (CDC 2018b).

Soils

Soils on the project site are mapped as Whiterock loam (Lot 1 and Lot 6) and Argonaut-Auburn complex (Lot 1). Whiterock loam soil is somewhat excessively drained, and Argonaut-Auburn complex soil is well-drained (NRCS 2018).

City Regulation of Geology and Soils

The City of Folsom regulates the effects of soils and geological constraints on urban development primarily through enforcement of the California Building Code, which requires the implementation of engineering solutions for constraints to urban development posed by slopes, soils, and geology. The City as additionally adopted a Grading Code (Folsom Municipal Code Section 14.29) that regulates grading citywide to control erosion, storm water drainage, revegetation, and ground movement.

Evaluation of Geology and Soils

Question a (i): No Impact. There are no active or potentially active faults located within the project site, or in the project vicinity as mapped under the Alquist-Priolo Earthquake Fault Zone Act (CDC 2018b). Because no faults underlie the project site, no impact would result, and no mitigation would be necessary.

Question a (ii): Less than Significant Impact. The project area is within seismic risk Zone 3, and a maximum credible earthquake on the Bear Mountain Fault could cause ground shaking of modified Mercalli scale intensity VII or greater, and subsequently cause major damage to structures and injury to people within the project area. While earthquake-induced ground shaking could occur in the project vicinity, historically, seismic activity in the Folsom area has been limited. Further, the proposed project would be constructed in accordance with standards imposed by the City of Folsom through the Grading Code, and in compliance with California Building Code requirements. Potential impacts would be reduced to levels considered acceptable in the City and region. As a result, the project would not expose people or structures to substantial adverse effects of seismic events. This would be a less than significant impact and no mitigation would be required.
Question a (iii) Less than Significant Impact. Liquefaction is a process by which water-saturated materials, such as soil and sediment lose strength and fail during strong ground shaking. Liquefaction occurs when granular material is transformed from a solid state into a liquefied state as a consequence of increased water pressure. Liquefaction is most commonly induced by strong ground shaking associated with earthquakes.

Factors that contribute to liquefaction potential include soil type, the level and duration of seismic ground motions, the type and consistency of soils, and the depth to groundwater. Liquefaction can occur where unconsolidated sediments and a high-water table coincide. Loose sands and peat deposits are susceptible to liquefaction, while clayey silts, silty clays, and clays deposited in freshwater environments are generally stable under the influence of seismic ground shaking. According to the soils mapping for the site, both the Argonaut-Auburn complex soils (present on Lot 1) and the Whiterock loam soils (present on Lot 1 and Lot 6) onsite have a depth to the water table greater than 80 inches (NRCS 2018).

The soils on both parcels do not contain the characteristics typical of soils most susceptible to liquefaction, and because the depths to groundwater are more than 80 inches below the ground surface, it is unlikely that the proposed project would be exposed to liquefaction hazards. Further, the proposed project would be constructed in accordance with standards imposed by the City through the Grading Code, and in compliance with California Building Code requirements. Compliance with these regulations would further reduce potential impacts related to liquefaction. Impacts as a result of seismic-related ground failure or liquefaction hazard at the project site would be less than significant and no mitigation would be required.

Question a (iv): Less than Significant Impact. There is a potential that the proposed project could be exposed to the effects of earthquake-induced ground shaking; however, standards imposed by the City of Folsom through the Grading Code and compliance with California Building Code requirements would reduce this potential impact to levels considered acceptable in the City and region. Likewise, the moderate potential effects from weak soils and water erosion hazards would be minimized through implementation of these standards. There would be no potential for impacts associated with rupture of a known earthquake fault, and less than significant impacts associated with strong seismic ground shaking, seismic-related ground failure, landslides, soil erosion or loss of topsoil, unstable soils, and expansive soils. Overall impacts would be less than significant, and no mitigation would be required.

Question b: Less than Significant Impact. Soils on the project site are well drained; however, Argonaut-Auburn soil has a high runoff potential, which would indicate a higher potential for water erosion. Ground disturbing activities during construction of the project would further increase the potential for soil erosion.

The California Building Code and the City’s Grading Code and standard conditions for approval contain requirements to minimize or avoid potential effects from water erosion hazards. As a condition of approval, prior to the issuance of a grading or building permit, the City would require the applicant to prepare a soils report, a detailed grading plan, and an erosion control plan by a qualified and licensed engineer. The soils report would identify soil hazards, including potential impacts from erosion. The City would be required to review and approve the erosion control plan based on the State of California Department of Conservation’s “Erosion and Control Handbook.” The erosion control plan would identify protective measures to be implemented during excavation, temporary stockpiling, disposal, and revegetation activities.
Further, projects resulting in one or more acre of ground disturbance require a General Construction Activity Stormwater Permit and a National Discharge Elimination System (NPDES) permit from the State Water Resources Control Board (SWRCB). Use of the permit requires the preparation of a Storm Water Pollution Prevention Plan (SWPPP) for approval by the SWRCB. The plan would contain best management practices to reduce potential impacts to water quality during construction of the project. Compliance with the City’s regulations, the California Building Code requirements, and implementation of the SWPPP would reduce potential impacts related to soil erosion from water to less than significant and no mitigation would be required.

Question c: Less than Significant Impact. Lot 1 is mapped as Argonaut-Auburn soil (91.9%), and Whiterock loam (8.1 percent), and Lot 6 is mapped as Whiterock loam. The NRCS does not have information regarding the stability of Argonaut-Auburn complex soils, nor Whiterock loam (NRCS 2018). However, the project area is not noted for unstable geologic formations susceptible to landslide, lateral spreading, subsidence, liquefaction, or collapse. Compliance with the City’s regulations and the California Building Code would minimize potential impacts from weak or unstable soils. Therefore, impacts related to unstable soils would be less than significant, and no additional mitigation would be necessary.

Question d: Less than Significant Impact. Expansive soils shrink and swell in response to changes in moisture levels. The changes in soil volumes can result in damage to structures including building foundations, and infrastructure, if the project design does not appropriately accommodate the changing soil conditions. The parcels are mapped as Argonaut-Auburn complex (Unit 107) and Whiterock loam (Unit 237), and NRCS does not have information regarding the shrink-swell of this soil type (NRCS 2018). The geotechnical report noted that soils of the study area (Argonaut-Auburn complex) do not have a high potential for shrink and swell (Geacon 2017). The proposed project would be designed to meet seismic safety requirements specified in the California Building Code, including standards to minimize impacts from expansive soils. Therefore, impacts related to the potential hazards of construction on expansive soils would be less than significant, and no mitigation would be required.

Question e: No Impact. The proposed project would tie into the City of Folsom’s wastewater system and no on-site wastewater disposal would occur. No significant impacts from or to geophysical features or hazards would occur with implementation of the proposed project and no mitigation is required.
VII. GREENHOUSE GAS EMISSIONS

<table>
<thead>
<tr>
<th>GREENHOUSE GAS EMISSIONS:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

HELIX Environmental Planning, Inc. completed the City’s Greenhouse Gas Reduction Strategy Consistency Checklist for the proposed project. This checklist is presented in Appendix B.

Environmental Setting

Climate change refers to any significant change in measures of climate, such as average temperature, precipitation, or wind patterns over a period of time. Climate change may result from natural factors, natural processes, and human activities that change the composition of the atmosphere and alter the surface and features of the land. Significant changes in global climate patterns have recently been associated with global warming, which is an average increase in the temperature of the atmosphere near the Earth’s surface; this is attributed to an accumulation of greenhouse gas emissions (GHG) in the atmosphere. GHGs trap heat in the atmosphere which, in turn, increases the Earth’s surface temperature. Some GHGs occur naturally and are emitted to the atmosphere through natural processes, while others are created and emitted solely through human activities. The emission of GHGs through fossil fuel combustion in conjunction with other human activities appears to be closely associated with global warming.

GHGs, as defined under California’s Assembly Bill 32 (AB 32), include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFC), perfluorocarbons (PFC), and sulfur hexafluoride (SF6). General discussions on climate change often include water vapor, ozone, and aerosols in the GHG category. Water vapor and atmospheric ozone are not gases that are formed directly in the construction or operation of development projects, nor can they be controlled in these projects. Aerosols are not gases. While these elements have a role in climate change, they are not considered by either regulatory bodies, such as CARB, or climate change groups, such as the Climate Registry, as gases to be reported or analyzed for control. Therefore, no further discussion of water vapor, ozone, or aerosols is provided.

GHGs vary widely in the power of their climatic effects; therefore, climate scientists have established a unit called global warming potential (GWP). The GWP of a gas is a measure of both potency and lifespan in the atmosphere as compared to CO2. For example, since CH4 and N2O are approximately 25 and 298 times more powerful than CO2, respectively, in their ability to trap heat in the atmosphere, they have GWPs of 25 and 298, respectively (CO2 has a GWP of 1). Carbon dioxide equivalent (CO2e) is a quantity that enables all GHG emissions to be considered as a group despite their varying GWP. The GWP of each GHG is multiplied by the prevalence of that gas to produce CO2e. The atmospheric lifetime and GWP of selected GHGs are summarized in Table 10.
Table 10. Global Warming Potentials and Atmospheric Lifetimes

<table>
<thead>
<tr>
<th>GREENHOUSE GAS</th>
<th>ATMOSPHERIC LIFETIME (years)</th>
<th>GLOBAL WARMING POTENTIAL (100-year time horizon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>50.0–200.0</td>
<td>1</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>12.0</td>
<td>25</td>
</tr>
<tr>
<td>Nitrous Oxide (N₂O)</td>
<td>114.0</td>
<td>298</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>14</td>
<td>1,430</td>
</tr>
<tr>
<td>PFC: Tetrafluoromethane (CF₃)</td>
<td>50,000.0</td>
<td>7,390</td>
</tr>
<tr>
<td>PFC: Hexafluoroethane (C₂F₆)</td>
<td>10,000.0</td>
<td>12,200</td>
</tr>
<tr>
<td>Sulfur Hexafluoride (SF₆)</td>
<td>3,200.0</td>
<td>22,800</td>
</tr>
</tbody>
</table>

HFC: hydrofluorocarbons; PFC: perfluorocarbons.

Regulatory Framework Relating to Greenhouse Gas Emissions

AB 32, the California Global Warming Solutions Act of 2006, recognizes that California is a source of substantial amounts of GHG emissions. The statute states that:

Global warming poses a serious threat to the economic wellbeing, public health, natural resources, and the environment of California. The potential adverse impacts of global warming include the exacerbation of air quality problems, a reduction in the quality and supply of water to the state from the Sierra snowpack, a rise in sea levels resulting in the displacement of thousands of coastal businesses and residences, damage to marine ecosystems and the natural environment, and an increase in the incidences of infectious diseases, asthma, and other human health-related problems.

In order to help avert these potential consequences, AB 32 established a State goal of reducing GHG emissions to 1990 levels by the year 2020, which was a reduction of approximately 16 percent from forecasted emission levels, with further reductions to follow. In addition, AB 32 required CARB develop a Scoping Plan to help the state achieve the targeted GHG reductions. In 2015, Executive Order (EO) B-30-15 established California GHG emission reduction targets of 40 percent below 1990 levels by 2030 and 80 percent below 1990 levels by 2050. The EO aligns California’s GHG emission reduction targets with those of leading international governments, including the 27 nation European Union. California met the target of reducing greenhouse gas emissions to 1990 levels by 2020, as established in AB 32. As a follow-up to AB 32 and in response to EO-B-30-15, Senate Bill (SB) 32 was passed by the California legislature in 2016 to codify the EO’s California GHG emission reduction target of 40 percent below 1990 levels by 2030.

In December 2008, CARB adopted its first version of its Climate Change Scoping Plan (Scoping Plan), which contained the main strategies California was to implement to achieve the mandate of AB 32 to reduce statewide GHG emissions to 1990 levels by 2020. The Scoping Plan establishes an overall framework for the measures to be adopted to reduce California’s GHG emissions. The Scoping Plan evaluates opportunities for sector-specific reductions, integrates all CARB and Climate Action Team early actions and additional GHG reduction measures by both entities, identifies additional measures to be pursued as regulations, and outlines the role of a cap-and-trade program.
On December 14, 2017, CARB adopted the 2017 Climate Change Scoping Plan (2017 Scoping Plan), which lays out the framework for achieving the mandate of SB 32 (2016) to reduce statewide GHG emissions to at least 40 percent below 1990 levels by the end of 2030 (CARB 2017).

The 2017 Scoping Plan includes guidance to local governments in Chapter 5, including plan-level GHG emissions reduction goals and methods to reduce communitywide GHG emissions. In its guidance, CARB recommends that “local governments evaluate and adopt robust and quantitative locally-appropriate goals that align with the statewide per capita targets and the State’s sustainable development objectives and develop plans to achieve the local goals.” CARB further states that “it is appropriate for local jurisdictions to derive evidence-based local per capita goals [or some other metric] that the local jurisdiction deems appropriate, such as mass emissions or per service population, based on local emissions sectors and population projections that are consistent with the framework used to develop the statewide per capita targets” (CARB 2017).

As part of the 2035 General Plan, the City prepared an integrated Greenhouse Gas Emissions Reduction Strategy (Appendix A to the 2035 General Plan; adopted August 28, 2018). The purpose of the Greenhouse Gas Emissions Reduction Strategy (GHG Strategy) is to identify and reduce current and future community GHG emissions and those associated with the City’s municipal operations. The GHG Strategy includes GHG reduction targets to reduce GHG emissions (with a 2005 baseline year) by 15 percent in 2020, 51 percent in 2035, and 80 percent in 2050. The GHG Strategy identifies policies within the City of Folsom General Plan that would decrease the City’s emissions of greenhouse gases. The GHG Strategy also satisfies the requirements of CEQA to identify and mitigate GHG emissions associated with the General Plan Update as part of the environmental review process and serves as the City’s “plan for the reduction of greenhouse gases”, per Section 15183.5 of the CEQA Guidelines, which provides the opportunity for tiering and streamlining of project-level emissions for certain types of discretionary projects subject to CEQA review that are consistent with the General Plan (City 2018).

Evaluation of Greenhouse Gas Emissions

The final determination of whether or not a project has a significant effect is within the purview of the lead agency pursuant to CEQA Guidelines Section 15064(b). The City’s GHG Strategy, described above, is a qualified plan for the reduction of greenhouse gases pursuant to CEQA Guidelines Section 15183.5. Consistency with the GHG Strategy may be used to determine the significance of the project’s GHG emissions.

The City’s 2035 General Plan Policy NCR 3.2.8 and GHG Strategy include criteria to determine whether the potential greenhouse gas emissions of a proposed project are significant (City 2018).

NCR 3.2.8 Streamlined GHG Analysis for Projects Consistent with the General Plan

Projects subject to environmental review under CEQA may be eligible for tiering and streamlining the analysis of GHG emissions, provided they are consistent with the GHG reduction measures included in the General Plan and EIR. The City may review such projects to determine whether the following criteria are met:

- Proposed project is consistent with the current general plan land use designation for the project site;
• Proposed project incorporates all applicable GHG reduction measures (as documented in the Climate Change Technical Appendix to the General Plan EIR) as mitigation measures in the CEQA document prepared for the project; and,

• Proposed project clearly demonstrates the method, timing and process for which the project will comply with applicable GHG reduction measures and/or conditions of approval, (e.g., using a CAP/GHG reduction measures consistency checklist, mitigation monitoring and reporting plan, or other mechanism for monitoring and enforcement as appropriate).

Question a: Less than Significant Impact with Mitigation. GHG emissions would be generated by the project during construction (vehicle engine exhaust from construction equipment, on-road hauling trucks, vendor trips, and worker commuting trips) and during long-term operation (electricity and natural gas use, electricity resulting from water consumption; solid waste disposal, and vehicle engine exhaust). To determine significance of the project’s GHG emissions, the City’s Greenhouse Gas Reduction Strategy Consistency Checklist was completed (City of Folsom 2021a; included as Appendix B):

Part 1: Land Use Consistency

The proposed project is consistent with the City’s 2035 General Plan land use and zoning designations?

Both project parcels are designated as Industrial/Office Park (IND) in the Folsom 2035 General Plan. The project proposes a General Plan Amendment to change the land use designation for both parcels to multi-family high density residential (MHD). Current zoning for Lot 1 is Limited Manufacturing Planned Development (M-L, PD), and current zoning for Lot 6 is Business and Professional Planned Development (B-P, PD). The proposed project would require a rezone at Lot 1 from M-L to R-4, and a rezone at Lot 6 from B-P to R-4. The Planned Development combining zone would remain. In accordance with the Greenhouse Gas Reduction Strategy Consistency Checklist, if the project would require a change in land use designation or a rezone, consistency is determined by calculating the estimated GHG emissions resulting from maximum buildout of the project site allowed using the current zoning and using the proposed zoning change. If the land use designation/zoning change would not result in an increase in annual GHG emissions, the project would be consistent (City 2021a).

An office building would be an allowable use for both the M-L and B-P zones. The maximum allowable lot coverage for an office building is 60 percent and a maximum of two stories are allowed. The resulting maximum buildout of both project parcels under the existing zoning would be office buildings totaling 623,600-SF of floor space. Using CalEEMod and all model defaults, 623,600-SF of general office building would result in approximately 6,075-MT CO₂e per year.

Under the proposed land use designation/zoning, one apartment per 1,700-SF of lot area would be allowed, resulting in a maximum buildout of 304 apartments. Using CalEEMod and model defaults, 304 low-rise apartments would result in approximately 2,431-MT CO₂e per year. This would be 60 percent lower than the GHG emissions for maximum buildout under the current land use designation/zoning, and the project would be consistent with GHG emissions.
generated by buildout of the 2035 General Plan. The CalEEMod output files are included in Appendix B.

Part 2: GHG Reduction Measures Consistency (only applicable measures shown):

E-1 Building energy Sector: The project will exceed the requirements of the 2016 California Building Energy Efficiency Standards (Title 24, Part 6) by 15 percent or more?

Consistent. The project would meet the requirement of the 2019 California Building Energy Efficiency Standards (Title 24, Part 6), including the requirements for onsite photovoltaic electricity generations (solar panels). According to the California Energy Commission (CEC), once rooftop solar electricity generation is factored in, homes built under the 2019 standards will use about 53 percent less energy than those under the 2016 standards (CEC 2018).

T-1 Mix of Uses: The project is a mixed-use building with two or more uses (i.e., residential, commercial, office, etc.) or if the site is 5-acres or larger there are two or more uses on the site connected by protected pedestrian paths (e.g., sidewalks, elevated walkways) excluding driveways?

Consistent. The project is larger than 5-acres and is located within the Folsom Corporate Center. With implementation of the project, the Folsom Corporate Center would contain a mix of uses including residential, office, medical office, and light manufacturing/research and development. Sidewalks and/or pedestrian paths would connect the project residences with adjacent land uses.

T-3 Bicycle Parking: Project provides five percent more bicycle parking spaces than required in the City's Municipal Code?

Consistent with mitigation. Mitigation Measure GHG-1 would require the installation of bicycle parking 5 percent or more higher than the requirements of City Code section 17.57.090 (for a total of 54 bicycle parking spaces).

T-6 High-Performance Diesel (Construction only): Use high-performance diesel (also known as Diesel-HPR or Reg-9000/RHD) for construction equipment?

Consistent with mitigation. Mitigation Measure GHG-2 would require the use of high-performance diesel for all project construction activities.

T-8 Electric Vehicle Charging (Residential): For multifamily projects with 17 or more dwelling units, provide electric vehicle charging in five percent of total parking spaces?

Consistent with mitigation. Mitigation Measure GHG-3 would require installation of electrical vehicle charging stations in a minimum of five percent of the total parking spaces on the project site.

SW-1 Enhanced Construction Waste Diversion: Project diverts to recycle or salvage at least 65 percent of nonhazardous construction and demolition waste generated at the project site in accordance with Appendix A4 (Residential) of CALGreen?

Consistent with mitigation. Mitigation Measure GHG-4 would require a minimum of 65 percent
of nonhazardous construction and demolition waste to be diverted, recycled or salvaged.

W-1 Water Efficiency: For new residential and non-residential projects, the project will comply with all applicable indoor and outdoor water efficiency and conservation measures required under CALGreen Tier 1?

Consistent with mitigation. Mitigation Measure GHG-5 would require implementation of all 2019 CALGreen Tier 1 applicable indoor and outdoor water efficiency and conservation measures.

With implementation of Mitigation Measures GHG-1 through -5, the project would be consistent with the City’s GHG Strategy. Therefore, the project would not generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment, and the impact would be less than significant with mitigation.

Mitigation Measure GHG-1: Bicycle Parking

In accordance with the City General Plan GHG Reduction Measure T-3, the project shall provide a minimum of five percent more bicycle parking than required in the City’s Municipal Code Section 17.57.090 (for a total of 54 bicycle parking spaces).

Mitigation Measure GHG-2: High-Performance Diesel

In accordance with the City General Plan GHG Reduction Measure T-6, the project shall use high-performance diesel (also known as Diesel-HPR or Reg-9000/RHD) for all diesel-powered equipment utilized in construction of the project.

Mitigation Measure GHG-3: Electric Vehicle Charging

In accordance with the City General Plan GHG Reduction Measure T-8, the project shall provide electric vehicle charging stations in five percent of the total surface parking spaces on the project site (for a total of 16 EV charging stations).

Mitigation Measure GHG-4: Enhanced Construction Waste Diversion

In accordance with the City General Plan GHG Reduction Measure SW-1, the project shall divert to recycle or salvage a minimum 65% of nonhazardous construction and demolition waste generated at the project site in accordance with Appendix A4 (Residential) of the as outlined in the California Green Building Standards Code (2019 CALGreen).

Mitigation Measure GHG-5: Water Efficiency

In accordance with the City General Plan GHG Reduction Measure W-1, the project shall comply with all applicable indoor and outdoor water efficiency and conservation measures required under 2019 CALGreen Tier 1, as outlined in the California Green Building Standards Code.

Question b: Less than Significant Impact. There are numerous State plans, policies, and regulations adopted for the purpose of reducing GHG emissions. The principal overall State plan and policy is AB 32, the California Global Warming Solutions Act of 2006. The quantitative goal of AB 32 is to reduce GHG
emissions to 1990 levels by 2020. SB 32 would require further reductions of 40 percent below 1990 levels by 2030. The mandates of AB 32 and SB 32 are implanted at the state level by the CARB’s Scoping Plan. Because the project’s operational year is post-2020, the project aims to reach the quantitative goals set by SB 32. Statewide plans and regulations such as GHG emissions standards for vehicles (AB 1493), the LCFS, and regulations requiring an increasing fraction of electricity to be generated from renewable sources are being implemented at the statewide level; as such, compliance at the project level is not addressed. Therefore, the proposed project would not conflict with those plans and regulations.

The Metropolitan Transportation Plan/Sustainable Communities Strategy (MTP/SCS) for Sacramento County is the 2020 MTP/SCS adopted by the Sacramento Area Council of Governments (SACOG) on November 18, 2019. The 2020 MTP/SCS lays out a transportation investment and land use strategy to support a prosperous region, with access to jobs and economic opportunity, transportation options, and affordable housing that works for all residents. The plan also lays out a path for improving our air quality, preserving open space and natural resources, and helping California achieve its goal to reduce greenhouse gas emissions (SACOG 2019). The transportation sector is the largest source of GHG emissions in the state. A project’s GHG emissions from cars and light trucks are directly correlated to the project’s vehicle miles traveled (VMT). According to the Transportation Impact Study prepared for the project, the project is anticipated to generate 18 percent less VMT per capita than the regional residential average (T. Kear Transportation Planning and Management, Inc. 2021). This VMT reduction exceeds the 15 percent reduction required by SB 743. In addition to regional VMT projections, SACOG utilizes local growth projections to develop the strategies and measures in the 2020 MTP/SCS. As discussed in question a), above, the change in land use and zoning would result in lower maximum potential GHG emissions compared to current General Plan land use/growth assumptions. Therefore, the regional VMT and population growth resulting from implementation of the project would be consistent with the assumptions used in the 2020 MTP/SCS.

As discussed in question a), above, with implementation of Mitigation Measures GHG-01 through GHG-05, the project would be consistent with the City’s GHG Strategy, a qualified plan for the reduction of greenhouse gases pursuant to CEQA Guidelines Section 15183.5. Therefore, the project would not conflict with CARB’s 2017 Scoping Plan, the SACOG’s 2020 MTP/SCS, or the City’s GHG Strategy, and the impact would be less than significant with mitigation.
VIII. HAZARDS AND HAZARDOUS MATERIALS

<table>
<thead>
<tr>
<th>HAZARDS AND HAZARDOUS MATERIALS: Would the project:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?</td>
<td>□</td>
<td>□</td>
<td>■</td>
<td>□</td>
</tr>
<tr>
<td>b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?</td>
<td>□</td>
<td>□</td>
<td>■</td>
<td>□</td>
</tr>
<tr>
<td>c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?</td>
<td>□</td>
<td>□</td>
<td>■</td>
<td>□</td>
</tr>
<tr>
<td>d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>■</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>■</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>■</td>
</tr>
<tr>
<td>g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?</td>
<td>□</td>
<td>□</td>
<td>■</td>
<td>□</td>
</tr>
<tr>
<td>h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?</td>
<td>□</td>
<td>□</td>
<td>■</td>
<td>□</td>
</tr>
</tbody>
</table>

Environmental Setting

Lot 1 and Lot 6 are currently undeveloped and have no past land uses associated with potentially hazardous sites. The schools located nearest to the project site are: Folsom High School, located approximately 1-mile west of the project site; Sandra J. Gallardo Elementary School, located approximately 1.20-miles west of the project site; and, Gold Ridge Elementary School, located 0.3-mile north of the project site.

The following databases were reviewed for the project site and surrounding area to identify potential hazardous contamination sites: the US EPA’s EnviroStor website database (EPA 2021); and the US EPA’s Superfund National Priorities List (EPA 2021). Based on the results of the databases reviewed, the project site is not listed as a hazardous waste site.
Federal and state laws include provisions for the safe handling of hazardous substances. The federal Occupational Safety and Health Administration (OSHA) administers requirements to ensure worker safety. Construction activity must also be in compliance with the California OSHA regulations (Occupational Safety and Health Act of 1970).

Evaluation of Hazards and Hazardous Materials

Question a, b, c: Less than Significant Impact. No existing hazardous materials have been identified on the project site, and the site has no history of past land uses associated with potentially hazardous sites. Development of the project site from undeveloped to residential land uses would result in an increase in the generation, storage, and disposal of hazardous wastes. During project construction, oil, gasoline, diesel fuel, paints, solvents, and other hazardous materials may be used. If spilled, these substances could pose a risk to the environment and to human health.

Following construction, household hazardous materials such as various cleansers, paints, solvents, pesticides, pool chemicals, and automobile fluids would be expected to be used. The routine transport, use, and disposal of hazardous materials are subject to local, state, and federal regulations to minimize risk and exposure. The potential risk of exposure or impacts from transport, use, and disposal of hazardous materials to schools and other nearby sensitive receptors would be minimized by implementation of regulations.

Further, the City has set forth its hazardous materials goals and policies in the Hazardous Materials Element of the General Plan. The policies protect the health and welfare of residents of Folsom through management and regulation of hazardous materials in a manner that focus on preventing problems. Additionally, the routine transport, use, and disposal of hazardous materials are subject to state and federal regulations to minimize risk and exposure. The potential for risks associated with the accidental release of hazardous materials during routine transport, use, or disposal would be less than significant for questions a) through c).

Question d: No Impact. The project site is not included on the lists of hazardous materials sites compiled and available on EnviroStor (California Department of Toxic Substances Control 2021) or the US EPA’s Superfund National Priorities List (EPA 2021). Therefore, no significant hazard to the public or environment would result with project implementation. No impact would occur, and no mitigation is necessary.

Question e, f: No Impact. The project site is not located in an Airport Land Use Plan area, and no public or private airfields are within 2-miles of the project site; therefore, the project would not result in a safety hazard for people residing or working in the project area. No impact would occur, and no mitigation is necessary for questions e) and f).

Question g: Less than Significant Impact. The City of Folsom published an Evacuation Plan in 2020 (city of Folsom 2020). The project site is located in Evacuation Zone 3L. Iron Point Road, which is located north of Lot 1 and Lot 6, is considered a minor evacuation route. No major evacuation routes occur within the vicinity of the project site. No aspect of the proposed project would modify traffic control points within Evacuation Zone 31 or preclude their continued use as an emergency evacuation route. The proposed project would not result in an increased concentration of large numbers of persons in any at-risk location, and the proposed project would not have a significant impact on any emergency plans. Thus, no significant impact would occur, and no mitigation would be necessary.
Question h: Less than Significant Impact. The project site is located in the City of Folsom, and it is provided by urban levels of fire protection by the City. Therefore, the proposed project would not increase the risk of wildland fires. No significant impact would occur, and no mitigation is necessary.
IX. HYDROLOGY AND WATER QUALITY

<table>
<thead>
<tr>
<th>HYDROLOGY AND WATER QUALITY:</th>
<th>Potential Impact</th>
<th>Less Than Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Violate any water quality standards or waste discharge requirements?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>f) Otherwise substantially degrade water quality?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>g) Place housing within a 100-year flood hazard area as mapped on a federal flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>j) Inundation by seiche, tsunami, or mudflow?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

A Preliminary Water Quality Report was prepared by RSC Engineering to develop sizing of stormwater management infrastructure for Lot 1 and Lot 6. Water Quality Reports are incorporated by reference and included as Appendix F.
Environmental Setting

There are no existing aquatic resources or constructed stormwater management facilities on the project site. North of Lot 1 is an existing collection of oak trees. To the northwest of Lot 1 is the Revel Senior Living Apartment Complex and Country House Memory Care Facility. The land west of Lot 1 is zoned as a General Commercial District (C-3) Planned Development and populated by an office park. Vacant, undeveloped land that is a proposed medical office building lies east of Lot 1, and Micron Technology Office park is northeast of the site. These land uses also serve as the western border for Lot 6. A small man-made pond lies east of Lot 6, in an area zoned for Limited Manufacturing. The land north of Lot 6 includes existing residential development, and the land south of Lot 6 includes an existing SAFE Credit Union.

Precipitation is the only apparent source of surface water for the project site. No developed storm drainage features are constructed on the project site. Because the project site is currently undeveloped, implementation of the project would result in an increase of impervious surface area and channelization of storm water runoff, the rates and volumes of which would increase. However, this is a normal consequence associated with development, and as shown in the preliminary grading plans for the project, the drainage patterns would be designed to not impact adjoining properties. Stormwater management features for the proposed project include: bioretention basins, Contech stormwater filters, and disconnected roof drains.

The multiple drainage management areas in Lot 1 would encompass the apartment buildings, pavement areas, pool, and amenity areas. The drainage areas direct the runoff to the proposed stormwater quality facilities by an onsite storm drain system. The stormwater quality facilities used (bio retention or Contech storm filters as appropriate) will be in accordance with City of Folsom requirements.

Lot 6 would be separated into multiple drainage management areas that would encompass the carports, parking areas, apartment buildings, pool, and amenity areas. The drainage areas direct the runoff to the stormwater quality facilities by an onsite storm drain system. The stormwater quality facilities used (bio retention, disconnected roof drain or Contech storm filters as appropriate) will be in accordance with City of Folsom requirements.

The on-site stormwater control system would tie-in to an existing stormwater stub at each site. The project would incorporate standard best management practices (BMP) to maintain existing water quality in accordance with City regulations.

Federal Emergency Management Agency (FEMA) flood insurance rate maps were reviewed for the project’s proximity to a 100-year floodplain. The proposed project is on FEMA panel 06067C0119H, effective August 16, 2012 (FEMA 2012). The project site is not located within a 100-year floodplain.

Neither of the parcels are located in an area of important groundwater recharge. Domestic water in the City is provided solely by surface water sources. The City is the purveyor of water to the area in which the project is located.

Regulatory Framework Relating to Hydrology and Water Quality

The City is a signatory to the Sacramento Countywide National Pollutant Discharge Elimination Program (NPDES) permit for the control of pollutants in urban stormwater. Since 1990, the City has been a
partner in the Sacramento Stormwater Quality Partnership, along with the County of Sacramento and the Cities of Sacramento, Citrus Heights, Elk Grove, Galt, and Rancho Cordova. These agencies are implementing a comprehensive program involving public outreach, construction and industrial controls (i.e., BMPs), water quality monitoring, and other activities designed to protect area creeks and rivers. This program would be unchanged by the proposed project, and the project would be required to implement all appropriate program requirements.

In addition to these activities, the City maintains the following requirements and programs to reduce the potential impacts of urban development on stormwater quality and quantity, erosion and sediment control, flood protection, and water use. These regulations and requirements would be unchanged by the proposed project.

Standard construction conditions required by the City include:

- **Water Pollution** – requires compliance with City water pollution regulations, including NPDES provisions.
- **Clearing and Grubbing** – specifies protection standards for signs, mailboxes, underground structures, drainage facilities, sprinklers and lights, trees and shrubbery, and fencing. Also requires the preparation of a Stormwater Pollution Prevention Plan (SWPPP) to control erosion and siltation of receiving waters.
- **Reseeding** – specifies seed mixes and methods for reseeding of graded areas.

Additionally, the City enforces the following requirements of the Folsom Municipal Code as presented in Table 11.
Table 11. City of Folsom Municipal Code Sections Regulating the Effects on Hydrology and Water Quality from Urban Development

<table>
<thead>
<tr>
<th>CODE SECTION</th>
<th>CODE NAME</th>
<th>EFFECT OF CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.70</td>
<td>Stormwater Management and Discharge Control</td>
<td>Establishes conditions and requirements for the discharge of urban pollutants and sediments to the storm-drainage system; requires preparation and implementation of Stormwater Pollution Prevention Plans.</td>
</tr>
<tr>
<td>13.26</td>
<td>Water Conservation</td>
<td>Prohibits the wasteful use of water; establishes sustainable landscape requirements; defines water use restrictions.</td>
</tr>
<tr>
<td>14.29</td>
<td>Grading Code</td>
<td>Requires a grading permit prior to the initiation of any grading, excavation, fill or dredging; establishes standards, conditions, and requirements for grading, erosion control, stormwater drainage, and revegetation.</td>
</tr>
<tr>
<td>14.32</td>
<td>Flood Damage Prevention</td>
<td>Restricts or prohibits uses that cause water or erosion hazards, or that result in damaging increases in erosion or in flood heights; requires that uses vulnerable to floods be protected against flood damage; controls the modification of floodways; regulates activities that may increase flood damage or that could divert floodwaters.</td>
</tr>
<tr>
<td>14.33</td>
<td>Hillside Development</td>
<td>Regulates urban development on hillsides and ridges to protect property against losses from erosion, ground movement and flooding; to protect significant natural features; and to provide for functional and visually pleasing development of the city’s hillsides by establishing procedures and standards for the siting and design of physical improvements and site grading.</td>
</tr>
</tbody>
</table>

Source: Folsom Municipal Code July 2011

Evaluation of Hydrology and Water Quality

Questions a, c, d, e, f: Less than Significant Impact. Ground disturbing activities associated with construction of the proposed project would include additional clearing and grading the project site. Modifications to the existing drainage patterns may result in localized flooding, and an increase in impervious surfaces may result in an increase in the total volume and peak discharges of stormwater runoff which may contribute to downstream erosion and flooding. Construction of the proposed project has the potential to degrade water quality associated with urban runoff. Ground disturbing activities would expose soil to erosion and may result in the transport of sediments which could adversely affect water quality.
Modifications to the onsite drainage resulting in on-or off-site erosion, pollutants, flooding, and/or otherwise substantially degrade water quality would be a potentially significant impact. The proposed project would be required to comply with various State and local water quality standards which would ensure the proposed project would not violate water quality standards or waste discharge permits, or otherwise substantially degrade water quality. As the project is greater than one acre, the proposed project would be subject to NPDES permit conditions which include the preparation of a SWPPP for implementation during construction. As described above, the proposed project would also be subject to all of the City's standard Code requirements, including conditions for the discharge of urban pollutants and sediments to the storm drainage system, and restrictions on uses that cause water or erosion hazards.

Further, prior to the issuance of grading and building permits, the applicant would be required to submit to the City a drainage plan that shows how project BMPs capture storm water runoff during project operations. Compliance with these requirements would ensure that water quality standards and discharge requirements are not violated, and water quality is protected. Impacts would be less than significant, and no mitigation would be necessary for questions a), c), d), e), and f).

Question b: Less than Significant Impact. Implementation of the proposed project would not result in the use of groundwater, because domestic water in the City is provided solely from surface water sources from the Folsom Reservoir. While the proposed project would result in additional impervious surfaces on the site that could affect groundwater recharge, the site is not known to be important to groundwater recharge. Further, because the proposed project would not rely on groundwater for domestic water and irrigation purposes, and because the site is not an important area of groundwater recharge, the proposed project would not deplete groundwater supplies or interfere substantially with groundwater recharge that would result in a net deficit in aquifer volume or a lowering of the local groundwater table. Therefore, no significant impacts would occur, and no mitigation would be necessary.

Question g and h: No Impact. Because the project site is located outside of a 100-year floodplain, development of the proposed project would not place persons or structures at risk from flood hazards, nor would it interfere with existing floodway capacity. Thus, no impacts would occur, and no mitigation would be necessary for questions g) and h).

Question i: Less than Significant Impact. The proposed project would not expose new development to inundation in the event of the failure of a dam. Should either of the City’s two main dams (Folsom Lake and Mormon Island) fail, failure would most likely occur with adequate warning to evacuate residents. The project is required to adhere to City established evacuation plans as outlined in the City of Folsom Evacuation Plan (City of Folsom 2020) reviewed by the Reclamation District that establish protocol in the event of the dam failure. With implementation of the evacuation plan in the event of the failure of a dam, the impact would be less than significant, and no mitigation would be necessary.

Question j: Less than Significant Impact. The City of Folsom is located approximately 95-miles from the Pacific Ocean, at elevations ranging from approximately 140- to 828-feet msl. Due to the distance and higher elevation, inundation by tsunami would not occur. The City is located adjacent to Folsom Lake, a reservoir of the American River impounded by a main dam on the river channel and wing dikes. Areas of the City adjacent to the wing dikes could be adversely affected by a seiche as a result of an earthquake, either through sloshing within a full reservoir or by a massive landslide or earth movement into the lake. Although historic seismic activity has been minor, the potential for strong ground shaking is present and...
the possibility exists of a strong earthquake occurring when lake levels are high. This could create a large enough wave to overtop or breach the wing dikes although this is considered to be a remote possibility. Mudslides and other forms of mass wasting occur on steep slopes in areas having susceptible soils or geology, typically as a result of an earthquake or high rainfall event. Slopes associated with the edges of the building pads are located on the project site; however, City grading standards, including requirements to evaluate slope stability and implement slope stabilizing measures as necessary, would prevent this potential effect. In summary, there would be no potentially significant effect from inundation by seiche, tsunami, or mudflow and no mitigation would be necessary.
X. **LAND USE AND PLANNING**

<table>
<thead>
<tr>
<th>LAND USE AND PLANNING:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Physically divide an established community?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Environmental Setting

Land use in the project area is regulated by the City of Folsom through the various plans and ordinances adopted by the City. These include the City of Folsom General Plan and the City of Folsom Municipal Code, including the Zoning Code. The General Plan currently identifies Lot 1 as Industrial/Office Park (IND), and zoned for Limited Manufacturing, Planned Development District (M-L PD). The General Plan currently identifies Lot 6 as IND, and zoned for Business Park, Planned Development District (B-P PD).

The proposed project includes a General Plan Amendment to change the land use designation in Lot 1 and Lot 6 from Industrial (IND) to Multi-Family, High Density (MHD); as well as a rezone from M-L PD to General Apartment, Planned Development District (R-4 PD) at Lot 1 and, and a rezone from B-P to M-4 at Lot 6. The Planned Development combining zone would remain.

A Planned Development Permit would be required because the proposed project is sited within a planned development overlay zoning designation. The Planned Development Permit would allow the City to review the site plan and associated project site details to ensure the project meets the standards and requirements beneficial to the City and its residents as defined in Section 17.38.100 of the Zoning Code.

Evaluation of Land Use and Planning

Question a: No Impact. Lot 1 is largely undeveloped, and is bordered by office buildings, oak woodland, and medical offices to the north, vacant land to the east, US Highway 50 and vacant land to the south, and commercial buildings, a memory care facility and undeveloped land to the west. Lot 6 is largely undeveloped and is bordered by Iron Point Road and residential development to the north, a constructed pond/wetland and office buildings to the east, office buildings and undeveloped land containing scattered oaks to the south, and office buildings to the west. Development of the project site would not physically divide an established community as various office space, vacant land, commercial land surrounds Lot 1 and Lot 6. The residential development located north of Lot 1 and Lot 6 would not be altered. Therefore, there would be no impact and no mitigation is required.
Question b: Less than Significant. The development standard for Planned Development (PD) is that the proposed project must be designed to provide open space, circulation, off-street parking, and other conditions in such a way as to form a harmonious, integrated project of sufficient quality to justify exceptions to the normal regulations of this title.

The project would require a General Plan Amendment to change the land use designation from IND in Lot 1 and Lot 6 to MHD in Lot 1 and Lot 6. A Rezone would be required for Lot 1 from M-L PD to R-4 PD, and for Lot 6 from B-P PD to R-4 PD. The General Plan Amendment and Rezone would be reviewed and approved by the City, and the project would be reviewed by the City for consistency with the proposed land use and zoning designations prior to the City issuing permits. The project would comply with these standards and not conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project; therefore, project-related impacts would be less than significant, and no mitigation would be necessary.

Question c: No Impact. No Habitat Conservation Plan or Natural Community Conservation Plan has been approved for the project area. Implementation of the proposed project would not conflict with any conservation plan. No impact would occur, and no mitigation is necessary.
XI. MINERAL RESOURCES

<table>
<thead>
<tr>
<th>MINERAL RESOURCES:</th>
<th>Potential Impact</th>
<th>Less Than Significant Impact</th>
<th>Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Setting

The Folsom area regional geologic structure is defined by the predominantly northwest- to southeast-trending belt of metamorphic rocks and the strike-slip faults that bound them. The structural trend influences the orientation of the feeder canyons into the main canyons of the North and South Forks of the American River. This trend is interrupted where the granodiorite plutons outcrop (north and west of Folsom Lake) and where the metamorphic rocks are blanketed by younger sedimentary layers (west of Folsom Dam) (Geotechnical Consultants, Inc 2003).

The presence of mineral resources within the City has led to a long history of gold extraction, primarily placer gold. No areas of the City are currently designated for mineral resource extraction.

Evaluation of Mineral Resources

Questions a, b: No Impact. The proposed project is not located in a zone of known mineral or aggregate resources (CDC 2021). No active mining operations are present on or near the site. Implementation of the project would not interfere with the extraction of any known mineral resources. Thus, no impacts would result, and no mitigation would be necessary.
XII. NOISE

<table>
<thead>
<tr>
<th>NOISE:</th>
<th>Potential Impact</th>
<th>Less Than Significant Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Generation of a substantial temporary or permanent increase in the ambient noise levels in the vicinity of the project in excess of standards established in the local General Plan or noise ordinance, or applicable standards of other agencies?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Generation of excessive groundborne vibration or groundborne noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) For a project located in the vicinity of a private airstrip or an airport land use plan, or where such a plan has not been adopted, within two miles of a public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Environmental Setting

The existing noise environment in the vicinity of the project site is dominated by vehicular traffic, primarily on US Highway 50, approximately 100-feet south of the project Lot 1, and Iron Point Road, approximately 20-feet north of the project Lot 6. Other noise sources include ambient urban noise sources (e.g., parking lots; heating, ventilation and air conditioning [HVAC] systems) associated with the commercial/industrial developments within the Folsom Corporate Center, including: the Kaiser Permanente medical offices on the north side of the project lot 1; Micron Technology between the project Lot 1 and Lot 6; and the SAFE Credit Union corporate office south of the project Lot 6.

Noise-sensitive land uses are land uses that may be subject to stress and/or interference from excessive noise, including residences, hospitals, schools, hotels, resorts, libraries, sensitive wildlife habitat, or similar facilities where quiet is an important attribute of the environment. Noise receptors (receivers) are individual locations that may be affected by noise. Noise-sensitive land uses in the project vicinity include multi-family residences across Iron Point Road, approximately 850-feet north of the project Lot 1 and approximately 160-feet north of the project Lot 6; and senior living apartments approximately 380 feet west of the project Lot 1.

An ambient noise survey for Lot 1 was conducted by Bollard Acoustical Consultants on February 4, 2021. A 24-hour measurement was taken with the microphone placed between the proposed Lot 1 pool and building 1, approximately 210-feet from the centerline of US Highway 50. The result of the measurement was 66 dBA \(L_{eq} \). The measurement was taken approximately 5-feet above existing ground level and does not account for project grading which would change ground level noise from US Highway 50 (Bollard 2021). The letter summarizing the noise survey is included as Appendix G.

Noise Metrics

All noise-level and sound-level values presented herein are expressed in terms of decibels (dB), with A weighting, abbreviated “dBA,” to approximate the hearing sensitivity of humans. Time averaged noise
levels of one hour are expressed by the symbol “L_{eq}” unless a different time period is specified. The Community Noise Equivalent Level (CNEL) is a 24-hour average, where noise levels during the evening hours of 7:00 p.m. to 10:00 p.m. have an added 5 dBA weighting, and sound levels during the nighttime hours of 10:00 p.m. to 7:00 a.m. have an added 10 dBA weighting. This is similar to the Day Night sound level (L_{DN}), which is a 24-hour average with an added 10 dBA weighting on the same nighttime hours but no added weighting on the evening hours.

Because decibels are logarithmic units, noise levels cannot be added or subtracted through standard arithmetic. Under the decibel scale, a doubling of sound energy corresponds to a 3 dBA increase. In other words, when two identical sources are each producing sound of the same loudness, the resulting sound level at a given distance would be 3 dBA higher than from one source under the same conditions. For example, if one automobile produces a sound pressure level (S_P) of 70 dBA when it passes an observer, two cars passing simultaneously would not produce 140 dBA—rather, they would combine to produce 73 dBA. Under the decibel scale, three sources of equal loudness together produce a sound level 5 dBA louder than one source.

Under controlled conditions in an acoustical laboratory, the trained, healthy human ear is able to discern 1 dBA changes in sound levels, when exposed to steady, single-frequency (“pure-tone”) signals in the mid-frequency (1,000 Hertz (Hz)–8,000 Hz) range. In typical noisy environments, changes in noise of 1 to 2 dBA are generally not perceptible. It is widely accepted, however, that people begin to detect sound level increases of 3 dB in typical noisy environments. Further, a 5 dBA increase is generally perceived as a distinctly noticeable increase, and a 10 dBA increase is generally perceived as a doubling of loudness.

Vibration Metrics

Groundborne vibration consists of rapidly fluctuating motions or waves transmitted through the ground with an average motion of zero. Sources of groundborne vibrations include natural phenomena and anthropogenic causes (e.g., explosions, machinery, traffic, trains, construction equipment). Vibration sources may be continuous (e.g., factory machinery) or transient (e.g., explosions). Peak particle velocity (PPV) is commonly used to quantify vibration amplitude. The PPV, with units of inches per second (in/sec), is defined as the maximum instantaneous positive or negative peak of the vibration wave. Decibels are also used compress the range of numbers required to describe vibration. Vibration velocity level (L_v) with units of VdB are commonly used to describe vibrations from transit sources.

Regulatory Framework

Noise Element

The Safety and Noise Element of the City of Folsom General Plan regulates noise emissions from public roadway traffic on new development of residential or other noise sensitive land uses. Policy SN 6.1.2 and Table SN-1 provide noise compatibility standards for land uses. For multi-family residential uses, noise due to traffic on public roadways, railroad line operations, and aircraft shall be reduced to or below 65 CNEL for outdoor activity areas and 45 CNEL for interior use areas (City 2021).

Policy SN 6.1.8 requires construction projects and new development anticipated to generate a significant amount of vibration to ensure acceptable interior vibration levels at nearby noise-sensitive uses based on Federal Transit Administration criteria. Table SN-3 provides vibration impact criteria. For
construction with infrequent vibration events, impacts would be significant if residences are subject to ground borne vibrations in excess of 80 VdB (City 2021).

Noise Ordinance

For stationary noise sources, the City has adopted a Noise Ordinance as Section 8.42 of the City Municipal Code (City of Folsom 1993). The Noise Ordinance establishes hourly noise level performance standards that are most commonly quantified in terms of the one-hour average noise level (L_{eq}). Using the limits specified in Section 8.42.040 of the Noise Ordinance, noise levels generated by the project would be significant if they exceed 50 dBA L_{eq} from 7:00 a.m. to 10:00 p.m. and 45 dBA L_{eq} from 10:00 p.m. to 7:00 a.m. at off-site residential property boundaries. Noise from the project’s air conditioning systems would be significant if exterior noise levels exceed 50 dBA, per Section 8.42.070 of the City Municipal Code. Section 8.42.060 exempts construction noise from these standards provided that construction does not occur before 7:00 a.m. or after 6:00 p.m. on weekdays, or before 8:00 a.m. or after 5:00 p.m. on Saturday or Sunday (City 1993).

Question a: Less than Significant with Mitigation

Construction Noise

Project construction noise was analyzed using the U.S. Department of Transportation (USDOT) Roadway Construction Noise Model ([RCNM]; USDOT 2008), which utilizes estimates of sound levels from standard construction equipment.

The nearest NSLUs to the project site area, single-family homes approximately 160 feet north of the project Lot 6. Heavy earthmoving equipment would have the potential to be used along the project’s periphery, closest to NSLUs, including rubber-tired dozers, backhoes, excavators, graders, and scrapers. The noisiest construction equipment anticipated to be used near NSLUs would be a grader used during grading. Modeling shows that the noise from a grader would result in 70.9 dBA L_{eq} at the closest residential property. Because construction equipment would be mobile as it moves across the project site, the noise level experienced by the neighboring uses would vary throughout the day. The modeling output for the grader and other anticipated construction equipment is included as Appendix G.

According to the City Code Section 8.42.060, noise sources associated with construction of the project which are conducted between the hours of 7:00 a.m. and 6:00 p.m., on Monday, Tuesday, Wednesday, Thursday, Friday and Saturday, and between 9:00 a.m. and 6:00 p.m. on Sunday, are exempt from the City noise standard (City 1993). Furthermore, the calculated short-term construction noise would be approximately 2 dBA higher than the calculated ambient traffic noise (see the off-site traffic noise discussions, below). A 2 dBA increase in ambient noise levels is generally not perceptible in typical outdoor environments and daytime construction noise increases would be less than significant. Nighttime construction noise is not anticipated for the project. However, nighttime construction is not exempt from the City Noise Ordinance and would exceed the nighttime standard of 45 dBA if it were to occur, resulting in a temporarily significant noise impact.

Off-Site traffic Noise

Modeling of the exterior noise environment for this report was accomplished using the Traffic Noise Model (TNM) version 2.5. TNM Version 2.5 was released in February 2004 by the U.S. Department of Transportation (USDOT) and calculates the daytime average hourly L_{eq} from three-dimensional model...
inputs and traffic data (USDOT 2004). The model-calculated one-hour L_{eq} noise output is approximately equal to the CNEL (Caltrans 2009). The noise modeling input and output is included in Appendix G.

According to the Transportation Impact Study (TIS), the project is expected to generate approximately 1,376 daily trips and 104 trips during the PM peak hour (T. Kear 2021). Future traffic noise levels presented in this analysis are based on traffic volumes for five segments of Iron Point Road derived from intersection turning counts included in the TIS for four scenarios: existing (2021); existing plus project; cumulative (2035); and cumulative plus project. The traffic volumes for the five analyzed segments of Iron Point Road are included in Appendix G. Changes in traffic noise levels were calculated based on an average distance of 80 feet from the road centerline and adjacent residential land uses. The modeling does not account for intervening terrain or structures (e.g., sound walls, buildings).

The calculated off-site traffic noise levels are shown in Table 12. In typical outdoor environments, a 3 dBA increase in ambient noise level is considered just perceptible and a 5 dBA increase (a doubling of noise) is considered distinctly perceptible. In areas where existing or future ambient noise exceed the land use compatibility standards, an individual project’s contribution to increases in ambient noise level could be considered significant if it exceeds 1.5 dBA. Because most of the areas along the analyzed road segments already exceed the land use noise compatibility standard listed in the city General Plan (60 dBA CNEL for low density residential; 65 dBA CNEL for multi-family residential and hotels, and 70 dBA for commercial), this analysis uses a threshold of a 1.5 dBA CNEL increase to be significant.

The maximum change in CNEL as a result of project-generated traffic would be 0.2 dBA CNEL, a change in ambient noise level that is lower than the threshold and is not discernable. Therefore, impacts related to the project generating a substantial permanent increase in ambient noise levels in the vicinity of the project in excess of General Plan standards from project-generated traffic would be less than significant.

Table 12: Off-Site Traffic Noise Levels

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing (CNEL)</th>
<th>Existing + Project (CNEL)</th>
<th>Change In CNEL</th>
<th>2035 (CNEL)</th>
<th>2035 + Project (CNEL)</th>
<th>Change In CNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Point Road.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grover Road to Oak Avenue Parkway</td>
<td>69.5</td>
<td>69.6</td>
<td>0.1</td>
<td>69.7</td>
<td>69.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Oak Avenue Parkway to West Kaiser Access Road</td>
<td>68.8</td>
<td>69.0</td>
<td>0.2</td>
<td>71.1</td>
<td>71.2</td>
<td>0.1</td>
</tr>
<tr>
<td>West Kaiser Access Road to Rowberry Way</td>
<td>68.8</td>
<td>68.8</td>
<td>0.0</td>
<td>71.1</td>
<td>71.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Rowberry Way to SAFE Credit Union Access</td>
<td>68.7</td>
<td>68.8</td>
<td>0.0</td>
<td>71.5</td>
<td>71.5</td>
<td>0.0</td>
</tr>
<tr>
<td>SAFE Credit Union Access to Broadstone Parkway</td>
<td>68.8</td>
<td>68.9</td>
<td>0.1</td>
<td>71.5</td>
<td>71.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Source: TNM version 2.5
Heating, Ventilation, and Air Conditioning (HVAC)

The project includes the outdoor installation of HVAC units on the roof of the proposed project buildings. The units would be located behind a parapet wall of equal or greater height to the HVAC unit, which would provide substantial noise attenuation. Specific details on planned HVAC units were not available at the time of this analysis. A typical system for apartments in multi-story buildings would be a Carrier model 38BRC-024-34 2-ton system for each apartment which has a sound rating of 73.4 dBA SWL. The closest NSLUs to project buildings systems would be the single-family homes across Iron Point Road from Lot 6. The minimum distance from potential HVAC systems and off-site residential property line would be approximately 160 feet. At 160-feet, an HVAC system producing 73.4 dBA SWL would result in 35 dBA L_{eq}, without considering reductions from the parapet walls. This noise level would not exceed the City Noise Ordinance daytime (50 dBA L_{eq}) or nighttime (45 dBA L_{eq}) maximum acceptable noise levels; and the impacts would be less than significant.

On-site Traffic Noise

Modeling of the exterior noise environment on the project site was accomplished using the Computer Aided Noise Abatement (CadnaA) model version 2021. The noise models used in this analysis were developed from Computer Aided Design (CAD) plans provided by the project architect. Input variables included, road alignment, elevation, area topography, projected traffic volumes, estimated truck composition percentages, and vehicle speeds. The one-hour L_{eq} traffic noise level is calculated utilizing peak-hour traffic. The model-calculated one-hour L_{eq} noise output is the equivalent to the CNEL (Caltrans 2009). The modeling includes the project buildings but does not account for terrain or off-site buildings and structures.

Traffic volumes on Iron Point Road were derived from the p.m. peak hour intersection turning counts reported in the TIS (T.Kear 2021). The truck composition for Iron Point Road was assumed to be typical for suburban streets: 3 percent medium trucks/busses and 1 percent heavy trucks. Traffic volumes and truck composition (2.7 percent medium trucks and 3.7 percent heavy trucks) for US-50 were modeled using data from the Caltrans traffic and truck counts for 2019 (Caltrans 2022).

Exterior Noise

As discussed above, the City General Plan Safety and Noise Element has established an exterior noise standard of 65 dBA CNEL for multi-family residential outdoor activity areas, defined as “[...] the patios or common areas where people generally congregate for multifamily development” (City 2021). The pool areas and patios surrounding the club houses would be the outdoor activity areas for the project The modeling shows ground level noise for the clubhouse/pool area would be approximately 65 dBA CNEL in Lot 1 and 63 dBA CNEL in Lot 6. This noise level would not exceed the City exterior noise standard and the impact would be less than significant.

Interior Noise

Standard building design and construction using current building codes provides approximately 15 to 20 dBA of exterior to interior noise reduction with the windows and doors closed. The noise at the exterior facades for the project buildings was modeled for receptors on first, second, and third floors of all project residential buildings and is shown in Table 13.
Table 13: Building Exterior Noise Levels

<table>
<thead>
<tr>
<th>Building</th>
<th>1st Floor (CNEL)</th>
<th>2nd Floor (CNEL)</th>
<th>3rd Floor (CNEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 1, Building 1</td>
<td>73.0</td>
<td>73.9</td>
<td>76.0</td>
</tr>
<tr>
<td>Lot 1, Building 2</td>
<td>72.5</td>
<td>71.8</td>
<td>73.4</td>
</tr>
<tr>
<td>Lot 1, Building 3</td>
<td>54.1</td>
<td>59.8</td>
<td>62.9</td>
</tr>
<tr>
<td>Lot 1, Building 4</td>
<td>56.8</td>
<td>58.1</td>
<td>60.8</td>
</tr>
<tr>
<td>Lot 1, Building 5</td>
<td>49.9</td>
<td>50.6</td>
<td>59.4</td>
</tr>
<tr>
<td>Lot 1, Building 6</td>
<td>52.7</td>
<td>54.7</td>
<td>57.1</td>
</tr>
<tr>
<td>Lot 1, Building 7</td>
<td>60.1</td>
<td>65.6</td>
<td>68.2</td>
</tr>
<tr>
<td>Lot 6, Building 1</td>
<td>62.6</td>
<td>62.9</td>
<td>63.3</td>
</tr>
<tr>
<td>Lot 6, Building 2</td>
<td>55.5</td>
<td>57.8</td>
<td>60.5</td>
</tr>
<tr>
<td>Lot 6, Building 3</td>
<td>71.0</td>
<td>71.0</td>
<td>70.7</td>
</tr>
<tr>
<td>Lot 6, Building 4</td>
<td>59.6</td>
<td>58.9</td>
<td>61.6</td>
</tr>
<tr>
<td>Lot 6, Building 5</td>
<td>65.0</td>
<td>68.2</td>
<td>68.5</td>
</tr>
</tbody>
</table>

Source: CadnaA version 2021

Buildings with exterior noise levels exceeding 65 dBA could result in interior noise levels in excess of the City General Plan Safety and Noise Element standard of 45 dBA CNEL. Lot 1 (buildings 1 and 2) and Lot 6 (building 3) would have exterior noise levels exceeding 70 dBA CNEL. Lot 1 building 7 and Lot 6 (building 5) would have exterior noise levels exceeding 65 dBA CNEL. Interior noise impacts would be potentially significant.

Exterior to interior noise reductions are dependent on the building exterior wall area, window area, door area, and room depth, which was not available at the time of this analysis. Calculations were made to estimate the minimum exterior wall and window sound transmissions class (STC) rating required for the project apartments to meet the City’s interior noise standards. The calculations were based on an assumed typical 20-feet by 10-feet apartment room with two exterior walls, two windows measuring 3-feet by 5-feet and one sliding glass door measuring 5-feet by 7-feet. The calculation sheets are included in Appendix G. Lot 1 buildings 1 and 2 and, Lot 6 (building 3) would require exterior walls with line of sight to US Highway 50 or Iron Point Road to have a minimum STC 46 rating and widows/sliding glass doors to have a minimum STC 35 rating. Lot 1 building 7 and Lot 6 (building 5) would require windows/sliding glass doors to have a minimum STC 28 rating.

Impact Conclusion

Construction noise generated by the project would result in short-term substantial noise increases compared to baseline existing conditions. The implementation of Mitigation Measure NOI-1 would restrict construction to daytime and minimize noise levels to surrounding residential uses.

The addition of permanent project-generated traffic vicinity roadways would not result in a discernable increase in ambient noise levels. The project would expose residential land uses to noise levels that exceed compatibility guidelines in the General Plan and impacts would be potentially significant. The implementation of Mitigation Measure NOI-02 would ensure that noise reduction measures are included in building material specifications.

Long-term operation of project building HVAC systems would not result in noise levels exceeding the City noise ordinance standards, measured at the outdoor spaces of the closest NSLUs to the project site.
Mitigation Measure NOI-1: Construction Noise Reduction Measures

Construction activities shall be required to comply with the following and be noted accordingly on construction contracts:

1. Construction hours/Scheduling: The following are required to limit construction activities to the portion of the day when occupancy of the adjacent sensitive receptors are at the lowest:
 a. Construction activities for all phases of construction, including servicing of construction equipment shall only be permitted during the hours of 7:00 a.m. and 7:00 p.m. Monday through Friday and between 9:00 a.m. to 5:00 p.m. on Saturdays. Construction is prohibited on Sundays and on all holidays.
 b. Delivery of materials or equipment to the site and truck traffic coming to and from the site is restricted to the same construction hours specified above.

2. Construction Equipment Mufflers and Maintenance: All construction equipment powered by internal combustion engines shall be properly muffled and maintained.

3. Idling Prohibitions: All equipment and vehicles shall be turned off when not in use. Unnecessary idling of internal combustion engines is prohibited.

4. Equipment Location and Shielding: All stationary noise-generating construction equipment, such as air compressors, shall be located as far as practical from the adjacent homes. Acoustically shield such equipment when it must be located near adjacent residences.

5. Quiet Equipment Selection: Select quiet equipment, particularly air compressors, whenever possible. Motorized equipment shall be outfitted with proper mufflers in good working order.

6. Staging and Equipment Storage: The equipment storage location shall be sited as far as possible from nearby sensitive receptors.

Mitigation Measure NOI-2: On-site Interior Noise Level Reduction

For the project’s habitable areas (both living rooms and bedrooms) with a direct line-of-sight to US Highway 50 for Lot 1 and Iron Point Road for Lot 2, the following measures shall be incorporated in the design of the project to reduce interior noise levels to 45 CNEL or less:

- Lot 1 (Buildings 1 and 2) and Lot 6 (Building 2) – minimum exterior wall requirement of STC 46.

- Lot 1 (Buildings 1 and 2) and Lot 6 (Building 2) – minimum window and glass sliding door requirement of STC 35.

- Lot 1 (Building 7) and Lot 6 (Building 5) – minimum window and glass sliding door requirement of STC 28.

- The building design shall include a mechanical ventilation system that meets the criteria of the International Building Code (Chapter 12, §1203.3 of the 2013 California Building Code) to ensure that windows would be able to remain permanently closed.

Question b: Less than Significant Impact. An on-site source of vibration during project construction would be a vibratory roller (primarily used to achieve soil compaction as part of the foundation and
paving construction), which could be used within approximately 160-feet of the single-family residences across Iron Point Road to the north. A large vibratory roller creates approximately 0.21 in/sec PPV at a distance of 25-feet, or 94.4 VdB. At a distance of 160-feet, a vibratory roller would create a PPV of 0.027 in/sec, or 77 VdB.¹ This would not exceed the City General Plan residential standard of 80 VdB for infrequent events. Once operational, the project would not be a source of groundborne vibrations. Impacts associated with construction-generated vibration would be less than significant. Therefore, the project would not result in the generation of excessive groundborne vibration or groundborne noise levels, and the impact would be less than significant.

Question c: Less than Significant Impact. The closest airports to the project site are the Cameron Park Airport, approximately 7.5-miles to the northeast, and Mather Airport, approximately 9.5-miles to the southwest. The project site is located within the review area identified in the Mather Airport Land Use Compatibility Plan (ALUCP). The project site is beneath the approach paths for runways 22 Left and 22 Right, however, the project site is not with the 60 dBA noise contour for the airport (Sacramento County Association of Governments 2020). Therefore, although the project site is subject to overflight by aircraft approaching and departing Mather Airport, the residents of the proposed project or people working in the project area would not be exposed to excessive levels of noise due to aircraft or airport operations, and the impact would be less than significant.

¹ Equipment PPV = Reference PPV * (25/D)ⁿ(in/sec), where Reference PPV is PPV at 25 feet, D is distance from equipment to the receptor in feet, and n= 1.1 (the value related to the attenuation rate through the ground); formula from Caltrans 2020. VdB = 20 * Log(PPV/4/10⁶).
XIII. POPULATION AND HOUSING

<table>
<thead>
<tr>
<th>POPULATION AND HOUSING:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Induce substantial population growth in an area, either</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>directly (for example, by proposing new homes and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>businesses) or indirectly (for example, through extension of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>roads or other infrastructure)?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Displace substantial numbers of existing housing,</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>necessitating the construction of replacement housing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>elsewhere?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Displace substantial numbers of people, necessitating the</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>construction of replacement housing elsewhere?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Setting

The proposed project includes the total construction of 253 new multi-family apartment units on two separate parcels, Lot 1, and Lot 6.

Evaluation of Population and Housing

Question a: Less than Significant. Implementation of the project would result in the construction of 253 apartment units. The proposed project would accommodate the demand for housing and would not induce substantial growth in the City of Folsom. It is anticipated that the project would generate between 253 and 665 new residents (assuming 2.63 people per unit, based on projected household size in 2035 [City of Folsom 2018]). The projected household size is for single family homes, which is anticipated to be larger than the apartment units within Lot 1 and Lot 6. Existing infrastructure in the area would not be expanded or extended as a result of the project. Lot 1 and Lot 6 would require the addition of main access driveways and emergency access driveways along the parcel boundaries; however, this addition would not impact the existing roadways within the vicinity of the project site. Moreover, the population generated by the project is within the projected increase in population from planned growth as projected in the City’s Housing Element. The impact would not be significant, and no mitigation would be required.

Question b and c: No Impact. The proposed project would include the development of residential units on a currently undeveloped and vacant site. There are no existing residences on the project site; therefore, neither housing units nor people would be displaced, and no replacement housing would be required. There would be no impact and no mitigation would be necessary for questions b) and c).
XIV. PUBLIC SERVICES

<table>
<thead>
<tr>
<th>PUBLIC SERVICES:</th>
<th>Potential Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project: Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Fire protection?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Police protection?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Schools?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Parks?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Other public facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Environmental Setting

The proposed project is in an area currently served by urban levels of all utilities and services. Public services provided by the City of Folsom in the project area include fire, police, school, library, and park services. The site is served by all public utilities including domestic water, wastewater treatment, and storm water utilities.

The City of Folsom Fire Department provides fire protection services. There are four stations within the City of Folsom. Station 37 is nearest to the project site; it is located at 70 Clarksville Road, approximately 0.76 miles north of the project site. The Fire Department responds to over 6,000 requests for service annually with an average of 16.4 per day. The City of Folsom Police Department is located at 46 Natoma Street, approximately 3-miles northwest of the project site.

The project site is located within the Folsom Cordova Unified School District and is within the attendance area for the Gold Ridge Elementary School, Sutter Middle School, and Folsom High School. There are several parks near the project site, including Livermore Community, John Kemp Community Park, and Willow Hills Reservoir Community Park.

The Sacramento Municipal Utilities District (SMUD) would supply electricity to the project site. Pacific Gas & Electric (PG&E) provides natural gas to the area and would provide natural gas to the project site.

The City of Folsom has a program of maintaining and upgrading existing utility and public services within the City. Similarly, all private utilities maintain and upgrade their systems as necessary for public convenience and necessity, and as technology changes.
Evaluation of Public Services

Questions a, b, c, d, e: Less than Significant. The project site is within the urban area of Folsom, and there is no indication that public services are inadequate. The proposed project would increase fire and police protection service due to the addition of 253 apartment units, but the project would not substantially render the current service level to be inadequate. Additionally, the project would have the potential to increase service to schools and parks, but the project would be required to pay development impact fees as well as park fees in order to accommodate for the new development, as required by the City of Folsom. Construction and operation of the proposed project would not require the construction or expansion of parks and other public facilities or result in the degradation of those facilities. Because there are no unique aspects of the project that would render the current service level to be inadequate, no new public facilities would be necessary to serve the proposed project. The impact of the project would be less than significant, and mitigation would not be necessary.
XV. RECREATION

<table>
<thead>
<tr>
<th>RECREATION: Would the project:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

Environmental Setting

The Folsom Parks and Recreation Department provides and maintains a full range of recreational activities and park facilities for the community. There are several parks near the project site, including the Livermore Community Park, John Kemp Community, and Willow Hills Reservoir Community Park. The proposed project would include on-site recreation facilities, including pools and clubhouses, dog parks, and sitting and picnic areas for use by the residents.

Evaluation of Recreation

Question a: Less than Significant. One component of the proposed project is to change the land use designation of Lot 1 and Lot 6 from commercial/industrial (IND) to residential (MHD). In total, the associated number of residents would not result in a substantial population increase to the City of Folsom population. An increase of 253 apartment units would generate between 253 and 665 new residents (assuming 2.63 people per unit, based on projected household size in 2035 [City of Folsom 2018]). The project proposes several recreational facilities on both parcels for use by the residences. Each apartment complex would have a pool, a fire pit, a dog park, a seating area, and a picnic area. The complex on Lot 1 would have a 3-story, 6,700 sf clubhouse, and the complex at Lot 6 would have a one-story, 3,150-sf clubhouse. The Folsom Municipal Code set a standard of 5-acres of parkland per 1,000 residents (City of Folsom Section 4.10.020). The City of Folsom Parks and Recreation Master Plan estimated that for a build-out population of 94,400 residents, there would be a total build-out of 586.6 acres of parkland (City of Folsom 2015).

Based on the projects distant location from a park and the addition of proposed recreational facilities that would be provided for the residents, the proposed project would not result in a substantial increase in the use of demand for neighborhood or regional parks, or other recreational facilities. Further, the City of Folsom charges impact fees to all new developments to abate a project’s impacts on parks and recreational facilities in the City. These impact fees are also used to address the identified future needs for the City’s park system. The impact fees and the associated funded improvements would reduce any impacts from the project to less than significant, and no mitigation would be necessary.

Question b: Less than Significant. The proposed project includes the construction of a pool, picnic area, dog park, and seating area within each apartment complex, for use by the residents. The complex on Lot
1 would have a 3-story, 6,700-sf clubhouse while the complex on Lot 6 would have a one-story, 3,150-sf clubhouse. The facilities would be for exclusive use by the residents of the proposed project. Additionally, the proposed project would be subject to park development impact fees established and collected by the City's Parks and Recreation Department to ensure that the City has sufficient park land. The construction of new recreational facilities and/or parks to meet the recreational demands of the City has been evaluated for environmental impacts through the General Plan process. Payment of the Parks and Recreation Department development impact fee offsets the potential for any significant impact related to recreation stemming from the proposed project and mitigation is not necessary. With the implementation of the impact fee, impacts to recreation would be less than significant.
XVI. TRANSPORTATION AND TRAFFIC

<table>
<thead>
<tr>
<th>TRANSPORTATION AND TRAFFIC:</th>
<th>Potential Impact</th>
<th>Less Than Significant Impact</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Result in inadequate emergency access?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) Conflict with adopted policies, plans or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Transportation and traffic were evaluated in the Folsom Corporate Center Apartments Transportation Impact Study as presented in Appendix H.

Environmental Setting

Study Scenarios

Four scenarios were identified for inclusion in this Transportation Impact Study through consultation with City of Folsom staff. The study determines the weekday AM peak-hour and PM peak-hour level of service (LOS) at study intersections under the following scenarios:

1. Existing 2021 without Project Condition;
2. Existing 2021 with Project Condition;
3. Existing Plus Approved Projects (EPAP) 2026 without Project Condition;
4. EPAP 2026 with Project Condition;
5. Cumulative 2035 without Project Condition; and,
Existing 2021, and Existing 2021 with Project Condition

Analysis of the existing condition reflects the traffic volumes and roadway geometry at the time the study began. These two scenarios (with and without the project) quantify performance measures, serve as a known reference point for those familiar with the study area, and identify project related impacts anticipated to occur if the project opened in 2021.

EPAP 2026 Condition, and EPAP 2026 with Project Condition

EPAP scenarios, with and without the project, analyze conditions with the addition of traffic from approved and reasonably foreseeable projects that affect study intersections and segments. These scenarios are intended to reflect anticipated traffic approximately five years into the future, when the project could reasonably be anticipated to be constructed. This “phasing analysis” is intended to assist the City of Folsom in phasing of improvements at study intersections which may be necessary to accommodate traffic from all approved and anticipated tentative maps over the next five years.

Cumulative 2035 Condition, and Cumulative 2035 with Project Condition

Cumulative scenarios, with and without the project, analyze anticipated conditions at the General Plan 2035 horizon year. These scenarios are intended to reflect anticipated traffic from Folsom Ranch, and shifts in traffic patterns anticipated after construction of two new interchanges and US Highway 50 overcrossings.

Roadway Systems

Brief descriptions of the key roadways serving the project site are provided below:

- **Iron Point Road** is an east-west arterial roadway with a raised median that runs from Folsom Boulevard to the eastern city limit along the north side of US Highway 50. Within the vicinity of the Project, Iron Point Road has six lanes, bike lanes, sidewalk, curb, and gutter. The posted speed limit is 45 mph. Turn pockets are provided at intersections.

- **Oak Avenue Parkway** is a north-south arterial that extends from Willow Creek Drive to Iron Point Road. It is a four-lane urban arterial road between Willow Creek Drive and Blue Ravine Road. It is a six-lane urban arterial road between Blue Ravine Road and Riley Street. It is a four-lane urban arterial road between Riley Street and Iron Point Road. Oak Avenue Parkway will be extended across US Highway 50 into Folsom Ranch and a new interchange will be constructed prior to the cumulative analysis scenarios.

- **Rowberry Drive** is a north-south two-lane local road that runs northward from the Kaiser Permanente Folsom Medical Offices into neighborhoods to the north of Iron Point Road. A future extension of Rowberry across US Highway 50 to Folsom Ranch is planned for the future.

- **Broadstone Parkway** in the project vicinity is a four-lane east-west arterial, that wraps around the back of the Palladio shopping center from Iron Point Road to connect with Empire Ranch Road near the Sacramento-El Dorado county line. Broadstone Parkway has bike lanes, sidewalk, curb, and gutter. Turn pockets are provided at intersections.
• **East Bidwell Street** runs through the City of Folsom from White Rock Road to Riley Street. East Bidwell Street becomes Scott Road south of US Highway 50. Near the Project area, East Bidwell Street is a six-lane arterial roadway with bike lanes, sidewalk, curb, and gutter. Turn pockets are provided at intersections. The speed limit on East Bidwell Street north of US Highway 50 is 45 mph.

• **Prairie City Road** is a north-south arterial that extends from Blue Ravine Road to White Rock Road, north of Blue Ravine Road it is called Sibley Street. It is a five-lane urban arterial road between Blue Ravine Road and Iron Point Road. Prairie City Road is a six-lane urban arterial road between Iron Point Road and US Highway 50. It is a two-lane rural road between US Highway 50 and White Rock Road.

Study Intersections

There are twenty study segments on US Highway 50 (Table 14) and seventeen study intersections (Table 15). The Oak Avenue Parkway interchange will be constructed by the cumulative analysis year, resulting in changes to some study US Highway 50 segments.

Table 14. US Highway 50 Study Segments

<table>
<thead>
<tr>
<th>US Highway 50 Segment</th>
<th>Segment Type</th>
<th>Applicable Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Highway 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td>2035</td>
</tr>
<tr>
<td>US Highway 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>2035</td>
</tr>
<tr>
<td>US Highway 50 westbound Oak Avenue diagonal onramp to Prairie City Rd offramp</td>
<td>Weave</td>
<td>2035</td>
</tr>
<tr>
<td>US Highway 50 westbound Prairie City offramp</td>
<td>Diverge</td>
<td>2021/2026</td>
</tr>
<tr>
<td>US Highway 50 westbound Prairie City loop onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 westbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 eastbound Prairie City fly-over onramp</td>
<td>Merge</td>
<td>2021/2026</td>
</tr>
<tr>
<td>US Highway 50 eastbound Prairie City fly-over onramp to Oak Ave offramp</td>
<td>Weave</td>
<td>2035</td>
</tr>
<tr>
<td>US Highway 50 eastbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>2035</td>
</tr>
<tr>
<td>US Highway 50 eastbound Oak Avenue diagonal onramp</td>
<td>Merge</td>
<td>2035</td>
</tr>
<tr>
<td>US Highway 50 eastbound Oak Avenue to East Bidwell</td>
<td>Basic</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 eastbound East Bidwell offramp</td>
<td>Diverge</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 eastbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
<tr>
<td>US Highway 50 eastbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>All</td>
</tr>
</tbody>
</table>

City of Folsom 104 March 2022
Level of Service Methodology

Level of service (LOS) is a qualitative indication of the level of delay and congestion experienced by motorists using an intersection. Levels-of-service are designated by the letters A through F, with A being the best conditions and F being the worst (high delay and congestion). Calculation methodologies, measures of performance, and thresholds for each letter grade differ for road segments, signalized intersections, and unsignalized intersections. Based on guidance from City of Folsom staff, the following procedures described below for intersection and segment traffic operations analysis were selected for this study.

Intersection Traffic Operations Analysis

Signalized Intersections

The methodology from the Highway Capacity Manual (HCM) 6th Edition, was used to analyze signalized intersections. LOS can be characterized for the entire intersection, each approach, or by lane group. Control delay alone (the weighted average delay for all vehicles entering the intersection) is used to characterize LOS for the entire intersection or an approach. Control delay and volume to capacity ratio are used to characterize LOS for lane groups. The average delay criteria used to determine the LOS at signalized intersections is presented in Table 16. The HCM 2010 methodology is used as the primary method. HCM 2000 methods are only utilized where the signal phasing is incompatible with HCM 2010 methods.

Table 15. Study Intersections and Control

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/US Highway 50 eastbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>2. Prairie City Rd/US Highway 50 westbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
</tr>
<tr>
<td>5. Iron Pt Road/Grover Rd</td>
<td>Signal</td>
</tr>
<tr>
<td>6. Iron Pt Road/Oak Avenue Pkwy</td>
<td>Signal</td>
</tr>
<tr>
<td>7. Iron Pt Road/West Kaiser access road</td>
<td>TWSC*</td>
</tr>
<tr>
<td>8. Iron Pt Road/Rowberry Way</td>
<td>Signal</td>
</tr>
<tr>
<td>9. Iron Pt Road/Safe Credit Union access</td>
<td>TWSC*</td>
</tr>
<tr>
<td>10. Iron Pt Road/Broadstone Pkwy</td>
<td>Signal</td>
</tr>
<tr>
<td>11. Iron Pt Road/East Bidwell St</td>
<td>Signal</td>
</tr>
<tr>
<td>12. Est Bidwell St/US Highway 50 westbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>13. East Bidwell St/US Highway 50 eastbound ramps</td>
<td>Signal</td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSC*</td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSC*</td>
</tr>
<tr>
<td>16. Oak Avenue Pkwy/US Highway 50 westbound ramps (2035 Only)</td>
<td>Signal</td>
</tr>
<tr>
<td>17. Oak Avenue Pkwy/US Highway 50 eastbound ramps (2035 Only)</td>
<td>Signal</td>
</tr>
</tbody>
</table>

*Two-way Stop Control.
Table 16. Level of Service Criteria for Signalized Intersections

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description</th>
<th>Average Delay(^1) (Sec./Vehicle.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very Low Delay: This level-of-service occurs when progression is extremely favorable, and most vehicles arrive during a green phase. Most vehicles do not stop at all.</td>
<td>≤ 10.0</td>
</tr>
<tr>
<td>B</td>
<td>Minimal Delays: This level-of-service generally occurs with good progression, short cycle lengths, or both. More vehicles stop than at LOS A, causing higher levels of average delay.</td>
<td>10.1-20.0</td>
</tr>
<tr>
<td>C</td>
<td>Acceptable Delay: Delay increases due to only fair progression, longer cycle lengths, or both. Individual cycle failures (to service all waiting vehicles) may begin to appear at this level of service. The number of vehicles stopping is significant, though many still pass through the intersection without stopping.</td>
<td>20.1-35.0</td>
</tr>
<tr>
<td>D</td>
<td>Approaching Unstable/Tolerable Delays: The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.</td>
<td>35.1-55.0</td>
</tr>
<tr>
<td>E</td>
<td>Unstable Operation/Significant Delays: This is considered by many agencies the upper limit of acceptable delays. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent occurrences.</td>
<td>55.1-80.0</td>
</tr>
<tr>
<td>F</td>
<td>Excessive Delays: This level, considered to be unacceptable to most drivers, often occurs with oversaturation (i.e., when arrival flow rates exceed the capacity of the intersection). It may also occur at high v/c ratios below 1.00 with many individual cycle failures. Poor progression and long cycle lengths may also contribute to such delay levels.</td>
<td>> 80.0 or v/c >1.0</td>
</tr>
</tbody>
</table>

Note 1: Weighted average of delay on all approaches. This is the measure used by the Highway Capacity Manual to determine LOS. Any movement with a volume-to-capacity ratio (v/c) greater than 1.0 is considered to be LOS F.

Unsignalized Intersections

The methodology from HCM 6th Edition is used for the analysis of unsignalized intersections. At an unsignalized intersection, most of the main street traffic is un-delayed, and by definition has acceptable conditions. The main street left-turn movements and the minor street movements are all susceptible to delay of varying degrees. Generally, the higher the main street traffic volumes, the higher the delay for the minor movements. Separate methods are utilized for Two-Way Stop-Controlled (TWSC) intersections and All-Way Stop-Controlled (AWSC) intersections.

- **TWSC**: The methodology for analysis of two-way stop-controlled intersections calculates an average total delay per vehicle for each minor street movement and for the major street left-turn movements, based on the availability of adequate gaps in the main street through traffic. A LOS designation is assigned to individual movements or combinations of movements (in the case of shared lanes) based upon delay, it is not defined for the intersection as a whole. Unsignalized intersection LOS reported herein is for each movement (or group of movements) based upon
the respective average delay per vehicle. Table 17 presents the average delay criteria used to determine the LOS at TWSC and AWSC intersections.

- **AWSC**: At all-way stop-controlled intersections, the level-of-service is determined by the weighted average delay for all vehicles entering the intersection. The methodologies for these types of intersections calculate a single weighted average delay and LOS for the intersection as a whole. The average delay criteria used to determine the LOS at all-way stop intersections is the same as that presented in Table 17. LOS for specific movements can also be determined based on the TWSC methodology.

It is not unusual for some of the minor street movements at unsignalized intersections to have LOS D, E, or F conditions while the major street movements have LOS A, B, or C conditions. In such a case, the minor street traffic experiences delays that can be substantial for individual minor street vehicles, but the majority of vehicles using the intersection have very little delay. Usually in such cases, the minor street traffic volumes are relatively low. If the minor street volume is large enough, improvements to reduce the minor street delay may be justified, such as channelization, widening, or signalization.

Table 17. Level of Service Criteria for Unsignalized Intersections

<table>
<thead>
<tr>
<th>Level of Service (LOS)</th>
<th>Description</th>
<th>TWSC^1 Average Delay by Movement (seconds/vehicle)</th>
<th>AWSC^2 Intersection Wide Average Delay (seconds/vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Little or no delay</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>B</td>
<td>Short traffic delay</td>
<td>> 10 and < 15</td>
<td>> 10 and < 15</td>
</tr>
<tr>
<td>C</td>
<td>Average traffic delays</td>
<td>> 15 and < 25</td>
<td>> 15 and < 25</td>
</tr>
<tr>
<td>D</td>
<td>Long traffic delays</td>
<td>> 25 and < 35</td>
<td>> 25 and < 35</td>
</tr>
<tr>
<td>E</td>
<td>Very long traffic delays</td>
<td>> 35 and < 50</td>
<td>> 35 and < 50</td>
</tr>
<tr>
<td>F</td>
<td>Extreme delays potentially affecting other traffic movements in the intersection</td>
<td>> 50 (or, v/c > 1.0)</td>
<td>>50</td>
</tr>
</tbody>
</table>

Note 1: Two-Way Stop Control (TWSC) LOS is calculated separately for each minor street movement (or shared movement) as well as major street left turns using these criteria. Any movement with a volume to capacity ratio (v/c) greater than 1.0 is considered to be LOS F.

Note 2: All-Way Stop Control (AWSC) assessment of LOS at the approach and intersection levels is based solely on control delay.

Signal Warrants

At each unsignalized intersection, the potential need for a traffic signal was evaluated. Traffic signal warrants are a series of standards that provide guidelines for determining if a traffic signal is appropriate. Signal warrant analyses are typically conducted at intersections of uncontrolled major streets and stop sign-controlled minor streets. If one or more signal warrants are met, signalization of the intersection may be appropriate. However, a signal should not be installed if none of the warrants are met, since the installation of signals would increase delays on the previously uncontrolled major street and may increase the occurrence of particular types of accidents.
As stated in the 2014 California Edition of the Manual on Uniform Traffic Control Devices (California MUTCD 2014)\(^3\), "An engineering study of traffic conditions, pedestrian characteristics, and physical characteristics of the location shall be performed to determine whether installation of a traffic control signal is justified at a particular location.

The investigation of the need for a traffic control signal shall include an analysis of factors related to the existing operation and safety at the study location and the potential to improve these conditions, and the applicable factors contained in the following traffic signal warrants:

- Warrant 1, Eight-hour Vehicular Volume
- Warrant 2, Four-hour Vehicular Volume
- Warrant 3, Peak-hour
- Warrant 4, Pedestrian Volume
- Warrant 5, School Crossing
- Warrant 6, Coordinated Signal System
- Warrant 7, Crash Experience
- Warrant 8, Roadway Network
- Warrant 9, Intersection Near a Grade Crossing

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal."

Consistent with the industry standard of practice, the Traffic Impact Analysis did not evaluate the full panoply of warrants for traffic signals, but instead focused on the peak-hour warrant. The MUTCD states that, "This [peak-hour] signal warrant shall be applied only in unusual cases, such as office complexes, manufacturing plants, industrial complexes, or high-occupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time." So, the peak-hour warrant is being used in this impact analysis study as an “indicator” of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed the peak-hour warrant are considered (for the purposes of this impact analysis) to be likely to meet one or more of the other signal warrants (such as the 4-hour or 8-hour warrants). This peak-hour analysis is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction.

Unsignalized intersections were evaluated using the Peak-hour Volume Warrant (Warrant No. 3) in the California MUTCD 2014. The Peak-hour Volume Warrant was applied where the minor street experiences long delays in entering or crossing the major street for at least one hour in a day. Even if the Peak-hour Volume Warrant is met, a more detailed signal warrant study is recommended before a signal is installed. The more detailed study should consider volumes during the daily peak-hours of roadway traffic, pedestrian traffic, and accident histories.

Basic Segments

Basic freeway segments operations and level-of-service is defined by density (passenger cars per mile per lane) which depends upon traffic volumes, and segment, characteristics. These characteristics

include the geometry, grade, free flow speeds, and heavy vehicles. Table 18 shows the level of service criteria for basic freeway segments.

Table 18. Level of Service Criteria – Basic Freeway Segments

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Maximum Density (passenger vehicles per mile per lane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><11</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
</tr>
<tr>
<td>C</td>
<td>26</td>
</tr>
<tr>
<td>D</td>
<td>35</td>
</tr>
<tr>
<td>E</td>
<td>45</td>
</tr>
<tr>
<td>F</td>
<td>> 45, or Demand exceeds capacity</td>
</tr>
</tbody>
</table>

Merge and Diverge Segments

Freeway merge and diverge segments operations and level-of-service is defined by density (passenger cars per mile per lane) which depends upon traffic volumes and the ramp characteristics. These characteristics include the length and type of acceleration/deceleration lanes, free-flow speeds, number of lanes, grade, heavy vehicles, and types of facilities. Table 19 shows the relationship of level-of-service to freeway density for merge, diverge, and weaving segments.

Table 19. Level of Service Criteria – Freeway Ramp Merge/Diverge Areas

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Maximum Density (passenger vehicles per mile per lane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><10</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>28</td>
</tr>
<tr>
<td>D</td>
<td>35</td>
</tr>
<tr>
<td>E</td>
<td>> 35</td>
</tr>
<tr>
<td>F</td>
<td>Demand exceeds capacity</td>
</tr>
</tbody>
</table>

Standards of Significance

Consistency with General Plan LOS policies for the proposed project were determined based on the methods described above and identified as either "significant" or "less than significant". General Plan Policy M4.1.3 addresses LOS:

Strive to achieve at least traffic LOS “D” (or better) for local streets and roadways throughout the City. In designing transportation improvements, the City will prioritize use of smart technologies and innovative solutions that maximize efficiencies and safety while minimizing the physical footprint. During the course of Plan buildout, it may occur that temporally higher LOS result where roadway improvements have not been adequately phased as development proceeds. However, this situation will be minimized based on annual traffic studies and monitoring programs. City Staff will report to the City Council at regular intervals via the Capital Improvement Program process for the Council to prioritize projects integral to achieving LOS D or better.

Consistent with historical practice within the City of Folsom, the General Plan EIR also includes a criterion addressing potential impacts at locations that operate at level-of-service E or F under
no-project conditions. Under that standard, a significant impact would occur if the proposed project would:

Increase the average delay by five seconds or more at an intersection that currently operates (or is projected to operate) at an unacceptable level-of-service under “no-project” conditions.

For the purposes of the traffic analysis, an impact is considered potentially significant if implementation of the project would result in any of the following:

- Cause an intersection in Folsom that currently operates (or is projected to operate) at LOS D or better to degrade to LOS E or worse.
- Increase the average delay by five seconds or more at an intersection in Folsom that currently operates (or is projected to operate) at an unacceptable LOS E or F.

Freeway Facilities

An impact is considered significant on freeway facilities if the project causes the facility to change from an acceptable to unacceptable LOS. For facilities that are or will be operating at unacceptable LOS without the project, an impact is considered significant if:

- The existing LOS cannot be maintained with the addition of project traffic;
- The project traffic increases vehicle density on a freeway mainline segment or freeway ramp junction by 0.1 passenger cars per lane per mile;
- The project increases the number of peak-hour vehicles on a freeway mainline segment or freeway ramp junction by more than 1 percent.

Per the Caltrans Guide for the Preparation of Traffic Impact Studies, Caltrans strives to maintain a target LOS at the transition between LOS C and LOS D on state highway facilities. However, for the affected portion of US 50, Caltrans has established a concept LOS E threshold. For consistency with other traffic impact studies performed in the City of Folsom that considered US Highway 50, LOS E was selected as the minimum standard for all study freeway facilities.

Bicycle/Pedestrian/Transit Facilities

An impact is considered significant if implementation of the project would:

- Inhibit the use of bicycle, pedestrian, or transit facilities.
- Eliminate existing bicycle, pedestrian, or transit facilities.
- Prevent the implementation of planned bicycle, pedestrian, or transit facilities.

Existing 2021 Conditions

Tables 20 and 21 present a summary of level-of-service results for the study intersections under Existing Conditions. The results indicate that all study segments are anticipated to operate at an acceptable LOS. Three study intersections exceed the General Plan LOS standard prior to the addition of project traffic.
- Prairie City Rd/American Aggregate Dr would operate at a deficient LOS during the AM peak if not for the Covid-19 related traffic reductions.
- Prairie City Rd/Iron Point Rd would operate at a deficient LOS during the AM and PM peak if not for the Covid-19 related traffic reductions.
- East Bidwell St/Iron Point Rd would operate at a deficient LOS during the PM peak if not for the Covid-19 related traffic reductions.

These locations are shown in orange highlight in the tables below. Calculation sheets for intersection delay and LOS are provided in Appendix H.

Table 20. Existing 2021 Intersection Delay and LOS

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>Without Project AM Delay (Sec.) and LOS</th>
<th>Without Project PM Delay (Sec.) and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/ US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.3 B</td>
<td>8.3 A</td>
</tr>
<tr>
<td>2. Prairie City Rd/ US 50 westbound ramps</td>
<td>Signal</td>
<td>19.4 B</td>
<td>8.9 A</td>
</tr>
<tr>
<td>3. Prairie City Rd/ American Aggregates Rd</td>
<td>Signal</td>
<td>66.1 E</td>
<td>28.8 C</td>
</tr>
<tr>
<td>4. Prairie City Rd/ Iron Point Rd</td>
<td>Signal</td>
<td>88.7 F</td>
<td>64.5 E</td>
</tr>
<tr>
<td>5. Iron Point Road/ Grover rd</td>
<td>Signal</td>
<td>50.9 D</td>
<td>42.3 D</td>
</tr>
<tr>
<td>6. Iron Point Road/ Oak Avenue Parkway</td>
<td>Signal</td>
<td>36.2 D</td>
<td>37.8 D</td>
</tr>
<tr>
<td>7. Iron Point Road/ West Kaiser access road</td>
<td>TWSC**</td>
<td>11.9 B Northbound</td>
<td>12.9 B Northbound</td>
</tr>
<tr>
<td>8. Iron Point Road/ Rowberry Way</td>
<td>Signal</td>
<td>14.3 B</td>
<td>14.2 B</td>
</tr>
<tr>
<td>9. Iron Point Rd/ Safe Credit Union access</td>
<td>TWSC**</td>
<td>15.6 C WB left/U</td>
<td>23.1 C WB left/U</td>
</tr>
<tr>
<td>10. Iron Point Rd/ Broadstone Pkwy</td>
<td>Signal</td>
<td>15.6 B</td>
<td>19.6 B</td>
</tr>
<tr>
<td>11. Iron Point Rd/ East Bidwell St</td>
<td>Signal</td>
<td>45.5 D</td>
<td>94.3 F</td>
</tr>
<tr>
<td>12. East Bidwell St/ US 50 westbound ramps</td>
<td>AWSC</td>
<td>29.5 C</td>
<td>35.1 D</td>
</tr>
<tr>
<td>13. East Bidwell St/ US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.2 B</td>
<td>21.5 C</td>
</tr>
<tr>
<td>14. APN 072-3120-023 “Lot 6” access</td>
<td>TWSC**</td>
<td>9.1 A Northbound</td>
<td>8.8 A Northbound</td>
</tr>
<tr>
<td>15. APN 072-3120-023 “Lot 1” access</td>
<td>TWSC**</td>
<td>9.6 A Southbound</td>
<td>9.3 A Southbound</td>
</tr>
</tbody>
</table>

*Level of Service

**Two Way Stop Control: LOS is defined by delay for the worst movement/ shared movement, which is listed with the LOS results.

Table 21. Existing 2021 US Highway 50 Segment Density and LOS

<table>
<thead>
<tr>
<th>US Highway 50 Segment</th>
<th>Segment Type</th>
<th>Without Project AM (Density LOS*)</th>
<th>Without Project PM (Density LOS*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>24.5 C</td>
<td>17.3 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>22.9 C</td>
<td>17.1 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>24.3 C</td>
<td>19.0 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>24.8 C</td>
<td>18.8 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td>Not applicable to this scenario.</td>
<td></td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

City of Folsom 111 March 2022
Trip Generation

Traffic generated by the proposed project was based on Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition (2017), and is provided in Table 22 below.

Table 22. Project Trip Generation

<table>
<thead>
<tr>
<th>Location</th>
<th>Quantity</th>
<th>Units</th>
<th>Metric</th>
<th>Daily</th>
<th>Am (Tot)</th>
<th>Am (In)</th>
<th>Am (out)</th>
<th>Pm (Tot)</th>
<th>Pm (In)</th>
<th>Pm (out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 6</td>
<td>100</td>
<td>Du</td>
<td>Rate</td>
<td>5.44</td>
<td>0.32</td>
<td>27%</td>
<td>73%</td>
<td>0.41</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trips</td>
<td>544</td>
<td>32</td>
<td>9</td>
<td>23</td>
<td>41</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>Lot 1</td>
<td>153</td>
<td>Du</td>
<td>Rate</td>
<td>5.44</td>
<td>0.32</td>
<td>27%</td>
<td>73%</td>
<td>0.41</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trips</td>
<td>832</td>
<td>49</td>
<td>13</td>
<td>36</td>
<td>63</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>253</td>
<td>Du</td>
<td>Rate</td>
<td>5.44</td>
<td>0.32</td>
<td>27%</td>
<td>73%</td>
<td>0.41</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trips</td>
<td>1376</td>
<td>81</td>
<td>22</td>
<td>59</td>
<td>104</td>
<td>62</td>
<td>42</td>
</tr>
</tbody>
</table>

Existing 2021 with Project Conditions

Peak-hour traffic associated with the Project was added to the Existing 2021 turning volumes at each intersection. Delay and level-of-service were determined at the study intersections and segments. Tables 23 and 24 presents a summary of the level-of-service results for the study intersections and segments.
Table 23. Existing 2021 Intersection Delay and LOS, with and without Project

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>2021 No Project AM Delay (Sec.) and LOS</th>
<th>2021 No Project PM Delay (Sec.) and LOS</th>
<th>2021 Plus Project AM Delay (Sec.) and LOS</th>
<th>2021 Plus Project PM Delay (Sec.) and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.3 B</td>
<td>8.3 A</td>
<td>10.4 B</td>
<td>8.4 A</td>
</tr>
<tr>
<td>2. Prairie City Rd/US 50 westbound ramps</td>
<td>Signal</td>
<td>19.4 B</td>
<td>8.9 A</td>
<td>19.5 B</td>
<td>8.9 A</td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
<td>66.1 E</td>
<td>28.8 C</td>
<td>66.3 E</td>
<td>28.9 C</td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
<td>88.7 F</td>
<td>64.5 E</td>
<td>90.6 F</td>
<td>66.1 E</td>
</tr>
<tr>
<td>5. Iron Pt Road/Grover Rd</td>
<td>Signal</td>
<td>50.9 D</td>
<td>42.3 D</td>
<td>51.4 D</td>
<td>42.5 D</td>
</tr>
<tr>
<td>6. Iron Point Rd /Oak Avenue Pkwy</td>
<td>Signal</td>
<td>36.2 D</td>
<td>37.8 D</td>
<td>36.4 D</td>
<td>38.4 D</td>
</tr>
<tr>
<td>7. Iron Point Rd /West Kaiser access road</td>
<td>TWSC**</td>
<td>11.9 B Northbound</td>
<td>12.9 B Northbound</td>
<td>11.9 B Northbound</td>
<td>13 B Northbound</td>
</tr>
<tr>
<td>8. Iron Point Rd /Rowberry Way</td>
<td>Signal</td>
<td>14.3 B</td>
<td>14.2 B</td>
<td>14.8 B</td>
<td>14.5 B</td>
</tr>
<tr>
<td>9. Iron Point Rd /Safe Credit Union access</td>
<td>TWSC**</td>
<td>15.6 C WB left/U</td>
<td>23.1 C WB left/U</td>
<td>16 C WB left/U</td>
<td>23.6 C WB left/U</td>
</tr>
<tr>
<td>10. Iron Point Rd /Broadstone Pkwy</td>
<td>Signal</td>
<td>15.6 B</td>
<td>19.6 B</td>
<td>15.7 B</td>
<td>19.7 B</td>
</tr>
<tr>
<td>11. Iron Point Rd /East Bidwell St</td>
<td>Signal</td>
<td>45.5 D</td>
<td>94.3 F</td>
<td>46 D</td>
<td>95.3 F</td>
</tr>
<tr>
<td>12. East Bidwell St/US 50 westbound ramps</td>
<td>Signal</td>
<td>29.5 C</td>
<td>35.1 D</td>
<td>29.6 C</td>
<td>35.7 D</td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSC**</td>
<td>9.1 A Northbound</td>
<td>8.8 A Northbound</td>
<td>9.2 A Northbound</td>
<td>8.9 A Northbound</td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSC**</td>
<td>9.6 A Southbound</td>
<td>9.3 A Southbound</td>
<td>10.3 B Southbound</td>
<td>10.2 B Southbound</td>
</tr>
</tbody>
</table>

Table 24. Existing 2021 US Highway 50 Segment Density and LOS, with and without Project

<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Type</th>
<th>2021 AM No Project Density and LOS</th>
<th>2021 PM No Project Density and LOS</th>
<th>2021 AM Plus Project Density and LOS</th>
<th>2021 PM Plus Project Density and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 50 westbound East Bidwell onramp</td>
<td>Diverge</td>
<td>24.5 C</td>
<td>17.3 B</td>
<td>24.5 C</td>
<td>17.4 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>22.9 C</td>
<td>17.1 B</td>
<td>22.9 C</td>
<td>17.1 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>24.3 C</td>
<td>19.0 B</td>
<td>24.3 C</td>
<td>19.0 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>24.8 C</td>
<td>18.8 C</td>
<td>24.8 C</td>
<td>18.8 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td>24.5 C</td>
<td>17.3 B</td>
<td>24.5 C</td>
<td>17.4 B</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>24.5 C</td>
<td>17.1 B</td>
<td>24.5 C</td>
<td>17.1 B</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue diagonal onramp to Prairie City Rd offramp</td>
<td>Weave</td>
<td>Not Applicable to this scenario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 50 westbound Prairie City offramp</td>
<td>Diverge</td>
<td>32.0 D</td>
<td>26.1 C</td>
<td>32.0 D</td>
<td>26.1 C</td>
</tr>
<tr>
<td>US 50 westbound Prairie City loop onramp</td>
<td>Merge</td>
<td>24.1 C</td>
<td>21.6 C</td>
<td>24.1 C</td>
<td>21.6 C</td>
</tr>
<tr>
<td>US 50 westbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>24.5 C</td>
<td>21.5 C</td>
<td>24.6 C</td>
<td>22.1 C</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td>28.6 D</td>
<td>31.0 D</td>
<td>28.6 D</td>
<td>31.1 D</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>18.6 B</td>
<td>23.2 C</td>
<td>18.6 B</td>
<td>23.2 C</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City fly-over onramp</td>
<td>Merge</td>
<td>19.6 B</td>
<td>25.4 C</td>
<td>19.6 B</td>
<td>25.4 C</td>
</tr>
</tbody>
</table>
Existing Plus Approved Project (EPAP) 2026 Conditions

EPAP Conditions analysis utilizes lane configurations and signal timing plans from the Existing Conditions. Tables 25 and 26 present a summary of LOS results for the study intersections under EPAP 2026 Conditions.

The results indicate that all study segments are anticipated to operate at an acceptable LOS; three study intersections exceed the General Plan LOS standard prior to the addition of project traffic.

- Prairie City Rd/American Aggregate Dr would operate at a deficient LOS during the AM peak if not for the Covid-19 related traffic reductions.
- Prairie City Rd/Iron Point Rd would operate at a deficient LOS during the AM and PM peak if not for the Covid-19 related traffic reductions.
- East Bidwell St/Iron Point Rd would operate at a deficient LOS during the AM and PM peak if not for the Covid-19 related traffic reductions.

These locations are shown in orange highlight in the tables below. Calculation sheets for intersection delay and LOS are provided in Appendix H.

Table 25. EPAP 2026 Intersection Delay and LOS

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>Without Project AM Delay (Sec.) and LOS</th>
<th>Without Project PM Delay (Sec.) and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/ US 50 eastbound ramps</td>
<td>Signal</td>
<td>15.2 B</td>
<td>10.5 B</td>
</tr>
<tr>
<td>2. Prairie City Rd/ US 50 westbound ramps</td>
<td>Signal</td>
<td>60.5 E</td>
<td>10.2 B</td>
</tr>
<tr>
<td>3. Prairie City Rd/ American Aggregates Rd</td>
<td>Signal</td>
<td>110.5 F</td>
<td>30.8 C</td>
</tr>
<tr>
<td>4. Prairie City Rd/ Iron Point Rd</td>
<td>Signal</td>
<td>123.4 F</td>
<td>72.4 E</td>
</tr>
<tr>
<td>5. Iron Point Road/ Grover rd</td>
<td>Signal</td>
<td>52 D</td>
<td>43.4 D</td>
</tr>
<tr>
<td>6. Iron Point Road/ Oak Avenue Parkway</td>
<td>Signal</td>
<td>36.8 D</td>
<td>40.4 D</td>
</tr>
<tr>
<td>7. Iron Point Road/ West Kaiser access road</td>
<td>TWSC**</td>
<td>12.4 B Northbound</td>
<td>13.7 B Northbound</td>
</tr>
<tr>
<td>8. Iron Point Road/ Rowberry Way</td>
<td>Signal</td>
<td>14.4 B</td>
<td>14.3 B</td>
</tr>
<tr>
<td>9. Iron Point Rd/ Safe Credit Union access</td>
<td>TWSC**</td>
<td>16.9 C WB left/U</td>
<td>27 D WB Left/ U</td>
</tr>
</tbody>
</table>
**Two Way Stop Control: LOS is defined by delay for the worst movement/ shared movement, which is listed with the LOS results.

Table 26. EPAP 2026 US 50 Segment Density and LOS

<table>
<thead>
<tr>
<th>US Highway 50 Segment</th>
<th>Segment Type</th>
<th>Without Project AM (Density LOS*)</th>
<th>Without Project PM (Density LOS*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>25.9 C</td>
<td>17.8 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>24.4 C</td>
<td>18.1 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>25.9 C</td>
<td>21.2 C</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>26.9 D</td>
<td>21.2 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td>Not applicable to this scenario.</td>
<td></td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>21.1 C</td>
<td>26.3 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue diagonal onramp to Prairie City Rd offramp</td>
<td>Weave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td>33.7 D</td>
<td>28.7 D</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City loop onramp</td>
<td>Merge</td>
<td>25.5 C</td>
<td>23.4 C</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>26.0 C</td>
<td>23.2 C</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City fly-over onramp</td>
<td>Diverge</td>
<td>30.5 D</td>
<td>33.3 D</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>19.6 B</td>
<td>24.1 C</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City fly-over onramp to Oak Ave offramp</td>
<td>Merge</td>
<td>21.1 C</td>
<td>26.3 C</td>
</tr>
<tr>
<td>US 50 eastbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>18.8 C</td>
<td>24.7 C</td>
</tr>
<tr>
<td>US 50 eastbound Oak Avenue diagonal onramp</td>
<td>Merge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 50 eastbound Oak Avenue to East Bidwell</td>
<td>Basic</td>
<td>11.8 B</td>
<td>17.6 B</td>
</tr>
<tr>
<td>US 50 eastbound East Bidwell offramp</td>
<td>Merge</td>
<td>9.3 A</td>
<td>13.9 B</td>
</tr>
<tr>
<td>US 50 eastbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>8.5 A</td>
<td>14.2 B</td>
</tr>
</tbody>
</table>

EPAP 2026 with Project Condition

The results indicate that all study segments are anticipated to operate at an acceptable LOS; three study intersections exceed the General Plan LOS standard prior to the addition of project traffic.

- Prairie City Rd/American Aggregate Dr would operate at a deficient LOS during the AM peak if not for the Covid-19 related traffic reductions.
- Prairie City Rd/Iron Point Rd would operate at a deficient LOS during the AM and PM peak if not for the Covid-19 related traffic reductions.
- East Bidwell St/Iron Point Rd would operate at a deficient LOS during the AM and PM peak if not for the Covid-19 related traffic reductions.

These locations are shown in orange highlight in the tables below. Because the increase in delay is less than five seconds, these exceedance of the General Plan level-of-service policy is not considered a project impact. Calculation sheets for intersection delay and LOS are provided in Appendix H.

Table 17. EPAP 2026 Intersection Delay and LOS, with and without Project

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>2021 No Project AM Delay (Sec.) and LOS</th>
<th>2021 No Project PM Delay (Sec.) and LOS</th>
<th>2021 Plus Project AM Delay (Sec.) and LOS</th>
<th>2021 Plus Project PM Delay (Sec.) and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/US 50 eastbound ramps</td>
<td>Signal</td>
<td>15.2 B</td>
<td>10.5 B</td>
<td>15.3 B</td>
<td>10.6 B</td>
</tr>
<tr>
<td>2. Prairie City Rd/US 50 westbound ramps</td>
<td>Signal</td>
<td>60.5 E</td>
<td>10.2 B</td>
<td>60.8 E</td>
<td>10.3 B</td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
<td>110.5 F</td>
<td>30.8 C</td>
<td>110.6 F</td>
<td>30.8 C</td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
<td>123.4 F</td>
<td>72.4 E</td>
<td>125.2 F</td>
<td>74.1 E</td>
</tr>
<tr>
<td>5. Iron Pt Road/Grover Rd</td>
<td>Signal</td>
<td>52 D</td>
<td>43.4 D</td>
<td>52.5 D</td>
<td>43.7 D</td>
</tr>
<tr>
<td>6. Iron Point Rd/Oak Avenue Pkwy</td>
<td>Signal</td>
<td>36.8 D</td>
<td>40.4 D</td>
<td>37.1 D</td>
<td>41.4 D</td>
</tr>
<tr>
<td>7. Iron Point Rd /West Kaiser access road</td>
<td>TWSC**</td>
<td>12.4 B Northbound</td>
<td>13.7 B Northbound</td>
<td>12.4 B Northbound</td>
<td>13.8 B Northbound</td>
</tr>
<tr>
<td>8. Iron Point Rd /Rowberry Way</td>
<td>Signal</td>
<td>14.4 B</td>
<td>14.3 B</td>
<td>15.0 B</td>
<td>14.6 B</td>
</tr>
<tr>
<td>9. Iron Point Rd /Safe Credit Union access</td>
<td>TWSC**</td>
<td>16.9 C WB left/U</td>
<td>27.0 D WB left/U</td>
<td>17.3 C WB left/U</td>
<td>27.7 D WB left/U</td>
</tr>
<tr>
<td>10. Iron Point Rd /Broadstone Pkwy</td>
<td>Signal</td>
<td>16.3 B</td>
<td>20.5 C</td>
<td>16.4 B</td>
<td>20.6 C</td>
</tr>
<tr>
<td>11. Iron Point Rd /East Bidwell St</td>
<td>Signal</td>
<td>67.1 E</td>
<td>143.4 F</td>
<td>68 E</td>
<td>144.5 F</td>
</tr>
<tr>
<td>12. East Bidwell St/US 50 westbound ramps</td>
<td>Signal</td>
<td>46.9 D</td>
<td>53.5 D</td>
<td>47 D</td>
<td>53.8 D</td>
</tr>
<tr>
<td>13. East Bidwell St/US 50 eastbound ramps</td>
<td>Signal</td>
<td>12.9 B</td>
<td>25.4 C</td>
<td>12.9 B</td>
<td>25.5 C</td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSC**</td>
<td>9.1 A Northbound</td>
<td>8.8 A Northbound</td>
<td>9.2 A Northbound</td>
<td>8.9 A Northbound</td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSC**</td>
<td>9.6 A Northbound</td>
<td>9.8 A Southbound</td>
<td>10.3 B Southbound</td>
<td>10.2 B Southbound</td>
</tr>
</tbody>
</table>

Two Way Stop Control: LOS is defined by delay for the worst movement/shared movement, which is listed with the LOS results.

Table 28. EPAP 2026 US 50 Segment Density and LOS, with and without Project

<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Type</th>
<th>2021 AM No Project Density and LOS</th>
<th>2021 PM No Project Density and LOS</th>
<th>2021 AM Plus Project Density and LOS</th>
<th>2021 PM Plus Project Density and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>25.9 C</td>
<td>17.8 B</td>
<td>26 C</td>
<td>17.9 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>24.4 C</td>
<td>18.1 B</td>
<td>24.4 C</td>
<td>18.1 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>25.9 C</td>
<td>21.2 C</td>
<td>25.9 C</td>
<td>21.2 C</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>26.9 D</td>
<td>21.2 C</td>
<td>26.9 D</td>
<td>21.2 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td>Not Applicable to this scenario</td>
</tr>
</tbody>
</table>

City of Folsom

March 2022

387
Cumulative 2026 Conditions with or without Project

The Cumulative Conditions analysis accounts for several planned changes to Folsom’s transportation system:

- Addition of a third northbound through lane at intersection #4 (Prairie City Rd/Iron Point Rd);
- Widening of Iron Point Rd to six lanes on all segments between Prairie City Rd and East Bidwell St (effecting intersections 6-9);
- Construction of the Rowberry Way overcrossing of US Highway 50;
- Construction of the Empire Ranch Rd interchange;
- Construction of the Oak Avenue Pkwy interchange; and,
- The extension of Alder Creek Pkwy through Oak Avenue Pkwy (along with other Folsom Ranch infrastructure).

Tables 29 and 30 present a summary of LOS results for the study intersections under EPAP 2026 Conditions. All study intersections and segments are anticipated to operate at an acceptable LOS. Calculation sheets for intersection delay and LOS are provided in Appendix H.
Table 29. Cumulative 2035 Intersection Delay and LOS

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>Without Project AM Delay (Sec.) and LOS</th>
<th>Without Project PM Delay (Sec.) and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/ US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.6 B</td>
<td>9.5 A</td>
</tr>
<tr>
<td>2. Prairie City Rd/ US 50 westbound ramps</td>
<td>Signal</td>
<td>17.2 B</td>
<td>9.4 A</td>
</tr>
<tr>
<td>3. Prairie City Rd/ American Aggregates Rd</td>
<td>Signal</td>
<td>53.3 D</td>
<td>29.5 C</td>
</tr>
<tr>
<td>4. Prairie City Rd/ Iron Point Rd</td>
<td>Signal</td>
<td>45.5 D</td>
<td>38 D</td>
</tr>
<tr>
<td>5. Iron Point Road/ Grover rd</td>
<td>Signal</td>
<td>48.5 D</td>
<td>38.9 D</td>
</tr>
<tr>
<td>6. Iron Point Road/ Oak Avenue Parkway</td>
<td>Signal</td>
<td>39.7 D</td>
<td>52.3 D</td>
</tr>
<tr>
<td>7. Iron Point Road/ West Kaiser access road</td>
<td>TWSC**</td>
<td>18.3 C Northbound</td>
<td>21.5 C Northbound</td>
</tr>
<tr>
<td>8. Iron Point Road/ Rowberry Way</td>
<td>Signal</td>
<td>24.3 C</td>
<td>32.7 C</td>
</tr>
<tr>
<td>9. Iron Point Rd/ Safe Credit Union access</td>
<td>TWSC**</td>
<td>23.6 C WB left/U</td>
<td>29.6 C WB left/U</td>
</tr>
<tr>
<td>10. Iron Point Rd/ Broadstone Pkwy</td>
<td>Signal</td>
<td>18 B</td>
<td>24.3 C</td>
</tr>
<tr>
<td>11. Iron Point Rd/ East Bidwell St</td>
<td>Signal</td>
<td>37.4 D</td>
<td>54.5 D</td>
</tr>
<tr>
<td>12. East Bidwell St/ US 50 westbound ramps</td>
<td>Signal</td>
<td>18.7 B</td>
<td>21.2 C</td>
</tr>
<tr>
<td>13. East Bidwell St/ US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.9 B</td>
<td>11.8 B</td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSC**</td>
<td>9.1 A Northbound</td>
<td>8.8 A Northbound</td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSC**</td>
<td>9.7 A Southbound</td>
<td>9.3 A Southbound</td>
</tr>
<tr>
<td>16. Oak Pkwy/ US 50 westbound ramps</td>
<td>Signal</td>
<td>13.7 B</td>
<td>22.7 C</td>
</tr>
<tr>
<td>17. Oak Pkwy/ US 50 eastbound ramps</td>
<td>Signal</td>
<td>9.5 A</td>
<td>20.4 C</td>
</tr>
</tbody>
</table>

**Two Way Stop Control: LOS is defined by delay for the worst movement/ shared movement, which is listed with the LOS results.

Table 30. Cumulative 2035 US 50 Segment Density and LOS

<table>
<thead>
<tr>
<th>US Highway 50 Segment</th>
<th>Segment Type</th>
<th>Without Project AM (Density LOS*)</th>
<th>Without Project PM (Density LOS*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>17.3 B</td>
<td>14.1 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>31.2 D</td>
<td>24 C</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>28.6 D</td>
<td>22.4 C</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>30.6 D</td>
<td>22.2 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td>33.7 D</td>
<td>27 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>28 D</td>
<td>24.7 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue diagonal onramp to Prairie City Rd offramp</td>
<td>Weave</td>
<td>27.6 C</td>
<td>25.2 C</td>
</tr>
<tr>
<td>US 50 westbound Prairie City offramp</td>
<td>Diverge</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>US 50 westbound Prairie City loop onramp</td>
<td>Merge</td>
<td>33.2 D</td>
<td>31.6 D</td>
</tr>
<tr>
<td>US 50 westbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>29.3 D</td>
<td>27.9 C</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td>35.8 E</td>
<td>37.5 E</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>27.1 C</td>
<td>31 D</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City fly-over onramp</td>
<td>Merge</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City fly-over onramp to Oak Ave offramp</td>
<td>Weave</td>
<td>22.5 C</td>
<td>26 C</td>
</tr>
<tr>
<td>US 50 eastbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>24.1 C</td>
<td>28.2 D</td>
</tr>
<tr>
<td>US 50 eastbound Oak Avenue diagonal onramp</td>
<td>Merge</td>
<td>26.7 C</td>
<td>32.5 D</td>
</tr>
<tr>
<td>US 50 eastbound Oak Avenue to East Bidwell</td>
<td>Basic</td>
<td>22.1 C</td>
<td>30.1 D</td>
</tr>
</tbody>
</table>
Cumulative 2035 with Project Conditions

Peak-hour traffic associated with the project was added to anticipated EPAP 2026 turning volumes at each intersection. Delay and LOS were then determined at the study intersections. Tables 31 and 32 present a summary of the LOS results for the study intersections. All study intersections and segments are anticipated to operate at an acceptable LOS. Calculation sheets for intersection delay and LOS are provided in Appendix H.

Table 31. Cumulative 2035 Intersection Delay and LOS with and without Project

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>No Project AM Delay (Sec.) and LOS</th>
<th>No Project PM Delay (Sec.) and LOS</th>
<th>Plus Project AM Delay (Sec.) and LOS</th>
<th>Plus Project PM Delay (Sec.) and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prairie City Rd/US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.6 B 9.5 A</td>
<td>10.6 B 9.5 A</td>
<td>25 C</td>
<td>34 C</td>
</tr>
<tr>
<td>2. Prairie City Rd/US 50 westbound ramps</td>
<td>Signal</td>
<td>17.2 B 8.4 A</td>
<td>17.2 B 8.4 A</td>
<td>38.1 D</td>
<td>39.1 D</td>
</tr>
<tr>
<td>3. Prairie City Rd/American Aggregates Rd</td>
<td>Signal</td>
<td>53.3 D 29.5 C</td>
<td>53.3 D 29.5 C</td>
<td>54.6 D</td>
<td>54.6 D</td>
</tr>
<tr>
<td>4. Prairie City Rd/Iron Point Rd</td>
<td>Signal</td>
<td>45.5 D 38 D</td>
<td>45.7 D 38.1 D</td>
<td>52.3 D</td>
<td>54.6 D</td>
</tr>
<tr>
<td>5. Iron Pt Road/Grover Rd</td>
<td>Signal</td>
<td>48.5 D 38.9 D</td>
<td>48.7 D 39.1 D</td>
<td>50.2 D</td>
<td>54.6 D</td>
</tr>
<tr>
<td>6. Iron Point Rd /Oak AvenuePkwy</td>
<td>Signal</td>
<td>39.7 D 52.3 D</td>
<td>40.8 D 54.6 D</td>
<td>69.7 D</td>
<td>69.7 D</td>
</tr>
<tr>
<td>7. Iron Point Rd /West Kaiser access road</td>
<td>TWSC**</td>
<td>18.3 C Northbound</td>
<td>21.5 C Northbound</td>
<td>18.4 C Northbound</td>
<td>21.7 C Northbound</td>
</tr>
<tr>
<td>8. Iron Point Rd /Rowberry Way</td>
<td>Signal</td>
<td>24.3 C 32.7 C</td>
<td>25 C 34 C</td>
<td>36.4 C</td>
<td>42.4 C</td>
</tr>
<tr>
<td>9. Iron Point Rd /Safe Credit Union access</td>
<td>TWSC**</td>
<td>23.6 C WB left/U</td>
<td>29.6 D WB left/U</td>
<td>23.9 C WB left/U</td>
<td>30.8 D WB left/U</td>
</tr>
<tr>
<td>10. Iron Point Rd /Broadstone Pkwy</td>
<td>Signal</td>
<td>18 B 24.3 C</td>
<td>18 B 24.4 C</td>
<td>37.5 D</td>
<td>54.6 D</td>
</tr>
<tr>
<td>11. Iron Point Rd /East Bidwell St</td>
<td>Signal</td>
<td>37.4 D 54.5 C</td>
<td>37.5 D 54.6 D</td>
<td>64.5 D</td>
<td>64.5 D</td>
</tr>
<tr>
<td>12. East Bidwell St/US 50 westbound ramps</td>
<td>Signal</td>
<td>18.7 B 21.2 C</td>
<td>18.7 B 21.2 C</td>
<td>54.6 D</td>
<td>54.6 D</td>
</tr>
<tr>
<td>13. East Bidwell St/US 50 eastbound ramps</td>
<td>Signal</td>
<td>10.9 B 11.8 B</td>
<td>10.9 B 11.8 B</td>
<td>10.9 B 11.8 B</td>
<td>10.9 B 11.8 B</td>
</tr>
<tr>
<td>14. APN 072-3120-023 "Lot 6" access</td>
<td>TWSC**</td>
<td>9.1 A Northbound</td>
<td>8.8 A Northbound</td>
<td>9.3 A Northbound</td>
<td>9 A Northbound</td>
</tr>
<tr>
<td>15. APN 072-3120-023 "Lot 1" access</td>
<td>TWSC**</td>
<td>9.7 A Southbound</td>
<td>9.3 A Southbound</td>
<td>10.4 B Southbound</td>
<td>10.3 B Southbound</td>
</tr>
<tr>
<td>16. Oak Avenue Pkwy/US 50 westbound ramps</td>
<td>Signal</td>
<td>13.7 B 22.7 C</td>
<td>14.4 B 23.4 C</td>
<td>14.4 B 23.4 C</td>
<td>14.4 B 23.4 C</td>
</tr>
<tr>
<td>Oak Avenue Pkwy/US 50 eastbound ramps</td>
<td>Signal</td>
<td>9.5 A 20.4 C</td>
<td>9.5 A 20.9 C</td>
<td>9.5 A 20.9 C</td>
<td>9.5 A 20.9 C</td>
</tr>
</tbody>
</table>

** Two Way Stop Control: LOS is defined by delay for the worst movement/shared movement, which is listed with the LOS results.

Table 32. Cumulative US Highway 50 Segment Density and LOS with and without Project

<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Type</th>
<th>AM No Project Density and LOS</th>
<th>PM No Project Density and LOS</th>
<th>AM Plus Project Density and LOS</th>
<th>PM Plus Project Density and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 50 westbound East Bidwell offramp</td>
<td>Diverge</td>
<td>17.3 B 14.1 B</td>
<td>17.3 B 14.1 B</td>
<td>17.3 B 14.1 B</td>
<td>17.3 B 14.1 B</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>31.2 D 24 C</td>
<td>31.2 D 24 C</td>
<td>31.2 D 24 C</td>
<td>31.2 D 24 C</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Type</th>
<th>AM No Project Density and LOS</th>
<th>PM No Project Density and LOS</th>
<th>AM Plus Project Density and LOS</th>
<th>PM Plus Project Density and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 50 westbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>28.6 D</td>
<td>22.4 C</td>
<td>28.6 D</td>
<td>22.5 C</td>
</tr>
<tr>
<td>US 50 westbound East Bidwell to Oak Ave</td>
<td>Basic</td>
<td>30.6 D</td>
<td>22.2 C</td>
<td>30.6 D</td>
<td>22.3 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue offramp</td>
<td>Diverge</td>
<td>33.7 D</td>
<td>27 C</td>
<td>33.7 D</td>
<td>27.1 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>28 D</td>
<td>24.7 C</td>
<td>28.0 D</td>
<td>24.7 C</td>
</tr>
<tr>
<td>US 50 westbound Oak Avenue diagonal onramp to Prairie City Rd offramp</td>
<td>Weave</td>
<td>27.6 C</td>
<td>25.2 C</td>
<td>27.7 C</td>
<td>25.3 C</td>
</tr>
<tr>
<td>US 50 westbound Prairie City offramp</td>
<td>Diverge</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 50 westbound Prairie City loop onramp</td>
<td>Merge</td>
<td>33.2 D</td>
<td>31.6 D</td>
<td>33.3 D</td>
<td>31.7 D</td>
</tr>
<tr>
<td>US 50 westbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>29.3 D</td>
<td>27.9 C</td>
<td>29.4 D</td>
<td>27.9 C</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City offramp</td>
<td>Diverge</td>
<td>35.8 E</td>
<td>37.5 E</td>
<td>35.8 E</td>
<td>27.7 E</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City diagonal onramp</td>
<td>Merge</td>
<td>27.1 C</td>
<td>31.0 D</td>
<td>27.2 C</td>
<td>31.1 C</td>
</tr>
<tr>
<td>US 50 eastbound Prairie City fly-over onramp</td>
<td>Merge</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 50 eastbound Prairie City fly-over onramp to Oak Ave offramp</td>
<td>Weave</td>
<td>22.5 C</td>
<td>26.0 C</td>
<td>22.7 C</td>
<td>26.1 C</td>
</tr>
<tr>
<td>US 50 eastbound Oak Avenue loop onramp</td>
<td>Merge</td>
<td>24.1 C</td>
<td>28.2 D</td>
<td>24.1 C</td>
<td>28.2 D</td>
</tr>
<tr>
<td>US 50 eastbound Oak Avenue diagonal onramp</td>
<td>Merge</td>
<td>26.7 C</td>
<td>32.5 D</td>
<td>26.8 C</td>
<td>32.5 D</td>
</tr>
<tr>
<td>US 50 eastbound Oak Avenue to East Bidwell</td>
<td>Basic</td>
<td>22.1 C</td>
<td>30.1 D</td>
<td>22.2 C</td>
<td>30.2 D</td>
</tr>
<tr>
<td>US 50 eastbound East Bidwell offramp</td>
<td>Diverge</td>
<td>15.2 B</td>
<td>21.7 C</td>
<td>15.3 B</td>
<td>21.7 C</td>
</tr>
<tr>
<td>US 50 eastbound East Bidwell loop onramp</td>
<td>Merge</td>
<td>11.7 B</td>
<td>16.8 B</td>
<td>11.1 B</td>
<td>16.9 B</td>
</tr>
<tr>
<td>US 50 eastbound East Bidwell slip onramp</td>
<td>Merge</td>
<td>11.7 B</td>
<td>19.2 B</td>
<td>11.7 B</td>
<td>19.2 B</td>
</tr>
</tbody>
</table>

Evaluation of Transportation and Traffic

Questions a, f: Less than Significant Impact with Mitigation. Under existing 2021 conditions with the project, the westbound left-turn queue during the AM peak hour exceeds available storage, and the project is anticipated to add 1 vehicle to the queue. Additional queued vehicles can contribute to LOS impacts when queues are longer than available storage and “spill-back” can affect the capacity of adjacent lanes. In order to avoid impacts to the westbound left-turn queue during the AM peak, Mitigation Measure TRA-1 shall be implemented. Additionally, under the EPAP 2026 conditions with the project, the westbound left-turn queue during the AM peak hour exceeds the available storage, and the project is anticipated to add 1 vehicle to the queue, contributing to potential LOS impacts. Similar to the existing 2021 conditions, in order to avoid impacts to the westbound left-turn queue, Mitigation Measure TRA-2 shall be implemented. With implementation of Mitigation Measures TRA-1 and TRA-2, the project would have a less than significant effect on traffic operations under 2021 conditions and under 2026 conditions with the addition of project traffic.

Mitigation Measure TRA-1: Prairie Road/ Iron Point Road Under Existing 2021 Conditions.

The applicant shall modify Prairie City Road/ Iron Point Road signal timing plan by shifting 1 second from the eastbound through movement to the westbound left turn movement, reduce the vehicle extension setting from adding five to six additional seconds to the green phase for through movements to adding four seconds to the green phase for through movements for each vehicle passing the detector after the minimum green phase length has been exceeded. This mitigation measure shall be implemented by the
City through the reimbursement agreement with the applicant to cover any City costs. The implementation of this mitigation measure shall occur prior to issuance of the first building permit.

Mitigation Measure TRA-2: Prairie Road/ Iron Point Road under EPAP 2026 Conditions. The applicant shall modify Prairie City Rd/Iron Point Rd signal timing plan by shifting 1 second from the eastbound through movement to the westbound left turn movement, reduce the vehicle extension setting from adding five to six additional seconds to the green phase for through movements to adding four seconds to the green phase for through movements for each vehicle passing the detector after the minimum green phase length has been exceeded. This mitigation measure shall be implemented by the City through the reimbursement agreement with the applicant to cover any City costs. The implementation of this mitigation measure shall occur prior to issuance of the first building permit.

Question b: Less than Significant Impact. The Governors’ Office of Planning and Research (OPR) has published guidance recommending a CEQA threshold for transportation impacts of land use projects of a 15% Vehicles Miles Travelled (VMT) reduction per capita, relative to either city or regional averages, based on the California’s Climate Scoping Plan. Qualitative assessment of VMT reduction is acceptable to screen projects.

Under State Law (SB 743), VMT became the only CEQA threshold of significance for transportation impacts on July 1, 2020. Without specific General Plan guidance for VMT thresholds, this analysis uses qualitative screening against OPR’s guidance of a 15 percent per capita VMT reduction. To support jurisdictions’ SB743 implementation, SACOG developed thresholds and screening maps for residential projects, using outputs from the 2016 base year travel demand model run for the 2020 MTP/SCS. SACOG’s travel demand model is activity/tour based and is designed to estimate an individual’s daily travel, accounting for land use, transportation and demographics that influence peoples’ travel behaviors. For residential projects, the threshold is defined as total household VMT per capita achieving 15% of reduction compared to regional (or any appropriate sub-area) average VMT. The map uses HEX geography. Residential VMT per capita per HEX is calculated by tallying all household VMTs, including VMT traveling outside the region, generated by the residents living at the HEX and divided by the total population in the HEX. Green hexagons denote areas where residential VMT is 50 to 85 percent of the regional average and yellow hexagons denote areas where residential VMT is 85 to 100 percent of the regional average.

The project is located within one of the green hexagons with average residential VMT of 17-miles per capita (per day). The project is anticipated to generate less than 82 percent of the regional per capita residential daily VMT of 20.82 miles. The project is therefore anticipated to have a less than significant impact on VMT.

Question c: No Impact. No private or public airports are located within the City of Folsom. The nearest public airfield is Cameron Airpark, located approximately 8.5-miles from the proposed project. The Mather Airport is located approximately 10-miles southwest of the project site. The proposed project would not result in modification to any air travel route. There would be no impact and no mitigation would be required.

Question d: Less than Significant Impact. The project would be accessed via proposed private roadways inside of the Folsom Corporate Center. Access to City streets is not being modified and Folsom’s requirements for right turn tapers and deceleration lanes are not applicable. Additionally, vehicle speeds and volumes within the business park’s internal roadway do not create a safety issue that would
necessitate right turn tapers and deceleration lanes. Project access is from private roadways within the Folsom Corporate Center and the City’s minimum required throat depth is not applicable.

Potential geometric constraints and safety issues were evaluated in the traffic study and addressed as described above. No issues were identified that suggest atypical or unsafe frontage conditions that require additional analysis. Therefore, the proposed project would have a less than significant impact.

Question e: Less than Significant Impact. Consistent with the City of Folsom’s Multi-Hazard Emergency Management Plan, the City maintains pre-designated emergency evacuation routes along major streets and thoroughfares. No aspect of the proposed project would modify these streets or preclude their continued use as an emergency evacuation route. The Project’s internal drive isles have 25-foot inner/50-foot outer minimum turning radii to accommodate fire department access. In addition to the primary access to each project parcel, separate emergency vehicle access points are also provided. Lot 6 has one emergency vehicle access point located 170-feet east of the main access driveway along a private road. Lot 1 has two emergency vehicle access points located approximately 640-feet east and west of the main access driveway along a private road. The plans would be approved by the City Fire Department prior to project implementation; therefore, a **less than significant impact** to fire protection would occur and no mitigation would be necessary.
XVII. TRIBAL CULTURAL RESOURCES

<table>
<thead>
<tr>
<th>TRIBAL CULTURAL RESOURCES:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>ii. A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Environmental Setting

As amended in 2014, Assembly Bill (AB 52), requires that the City of Folsom (City) provide notice to any California Native American tribes that have requested notice of projects subject to CEQA review and consult with tribes that responded to the notice within 30 days of receipt with a request for consultation. Section 21073 of the Public Resources Code (PRC) defines California Native American tribes as “a Native American tribe located in California that is on the contact list maintained by the NAHC for the purposes of Chapter 905 of the Statutes of 2004.” This includes both federally and non-federally recognized tribes. For the City of Folsom, these include the following tribes that previously submitted general request letters, requesting such noticing:

- Wilton Rancheria (letter dated January 13, 2020)
- Ione Band of Miwok Indians (letter dated March 2, 2016)
- United Auburn Indian Community (UAIC) of the Auburn Rancheria (letter dated November 23, 205 and updated per UAIC via email on September 29, 2021)

The purpose of consultation is to identify Tribal Cultural Resources (TCR) that may be significantly impacted by the proposed Project, and to allow the City to avoid or mitigate significant impacts prior to Project approval and implementation. Section 21074(a) of the PRC defines TCRs for the purpose of CEQA as: Sites, features, places, cultural landscapes (geographically defined in terms of the size and scope).
sacred places, and objects with cultural value to a California Native American tribe that are either of the following:

a) Included or determined to be eligible for inclusion in the California Register of Historical Resources; and/or

b) Included in a local register of historical resources as defined in subdivision (k) of Section 5020.1; and/or

c) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Section 5024.1. In applying the criteria set forth in subdivision (c) of Section 5024.1 for the purposes of this paragraph, the lead agency shall consider the significance of the resource to a California Native American tribe.

Because criteria A and B also meet the definition of a Historical Resource under CEQA, a TCR may also require additional consideration as a Historical Resource. TCRs may or may not exhibit archaeological, cultural, or physical indicators and can only be identified by a culturally affiliated tribe, which has been determined under State law to be the subject matter expert for TCRs (ECORP 2022).

City Consultation

Assembly Bill 52

On September 21, 2021, the City of Folsom sent project notification letters to the three California Native American tribes named on the City’s AB 52 contact list. The letters provided each tribe with a brief description of the Project and its location, contact information for the City’s authorized representative, and a notification that the tribe has 30 days to request consultation. The 30-day response window closed on October 21, 2022.

The only tribe to respond was the UAIC. On September 29, 2021, the City received an email from Anna Cheng that acknowledged receipt of the City’s notification letter and informed the City that the UAIC has a new point of all CEQA-related letters and documents, Anna Starkey. On September 30, 2021, the City received an email from Anna Starkey requesting consultation. The response indicated that there is a known TCR located west of the proposed Project boundary and requested access for a survey of the Project Area to ensure that the proposed Project does not extend into the TCR location.

On October 7, 2021, the City formally initiated consultation with UAIC and acknowledged the tribe’s statement about a known TCR located in the vicinity. In the correspondence to the tribe, the City noted that a survey of the Project Area had been conducted recently and that a copy of the report would be provided to the tribe in advance of a meeting or further site visits.

On November 4, 2021, Anna Starkey responded to the City’s separate SB 18 outreach (Section 2.2) and referenced AB 52 in her reply. (From this point forward, all correspondence between the City and UAIC was simultaneously under both AB 52 and SB 18.) She noted the cultural sensitivity of the property and requested a copy of the cultural resources survey report that was being prepared and indicated the tribe’s desire to defer to the Shingle Springs Band of Miwok Indians, if they were consulting on the Project. The City responded on November 16, 2021 to confirm the plan to forward a copy of the cultural
resources survey report when it was completed and that Shingle Springs had already been provided the opportunity to consult.

Accordingly, on December 13, 2021, the City provided a copy of the cultural resources survey report (HELIX 2021) to UAIC for their review. Anna Starkey acknowledged receipt of the report the same day and stated that “for archaeological tribal cultural resources, UAIC believes that our standard unanticipated discoveries mitigation measure should suffice for this project.” In her response, she also inquired about the number of oak trees that are proposed for removal and how they will be mitigated for. She questioned if any heritage trees had been identified and whether an arborist report had been prepared. The City replied with a copy of the arborist report, and upon her review, she indicated that heritage trees (in general) are a significant TCR and should be protected and offered to provide language for use in the CEQA document. The City responded that staff are still awaiting information on the plans for the heritage tree, and that this information would be provided upon receipt.

On December 17, 2021, the City contacted UAIC to indicate that although there are many nonnative oaks on the property, there is a single heritage tree in the Project Area that will be preserved in place as part of the Project’s design, which is consistent with the City’s Tree Preservation Ordinance. The City provided a link to the ordinance and stated that it welcomed the submission of suggested CEQA language for staff consideration.

On January 3, 2022, UAIC provided a document to the City that expresses the UAIC’s belief that native heritage trees, in general, have significance to the Miwok and Maidu (Nisenan) people, and that conservation of heritage trees is important. The UAIC provided the language with the intent for it to be incorporated into the CEQA document, and therefore, would not be considered confidential information. A copy of the UAIC submittal is included in Appendix I.

Senate Bill 18

On behalf of the City, ECORP contacted the California NAHC on September 7, 2021, to request a list of tribal contacts under SB 18. The NAHC responded with the list on October 20, 2021. This list is usually different than the AB 52 list because it pulls from a different database at NAHC. Using the list provided, the City mailed project notices to the following tribes on October 26 and afforded them 90 days to respond to request consultation under SB 18 (ECORP 2022).

The 90-day response window closed on January 24, 2022.

- Buena Vista Rancheria of Me-Wuk Indians
- Chicken Ranch Rancheria of Me-Wuk Indians
- Colfax-Todds Valley consolidated Tribe
- Guidiville Indian Rancheria
- Ione Band of Miwok Indians
- Muwekma Ohlone Indian Tribe of the San Francisco Bay area
- Nashville Enterprise Miwok-Maidu-Nishinam Tribe
- North Valley Yokuts Tribe
- Shingle Springs Band of Miwok Indians
• The Confederated Villages of Lisjan
• Tsi Akim Maidu
• Tule River Indian Tribe
• United Auburn Indian Community
• Wilton Rancheria
• Yocha Dehe Wintun Nation

On November 4, 2021, Anna Starkey from UAIC responded to the notice. (From this point forward, all correspondence between UAIC and the City was carried out simultaneously relative to both AB 52 and SB 18.)

Among the remaining tribes noticed under SB 18, only one other tribe responded. On November 12, 2021, the Yocha Dehe Wintun Nation responded by email with a letter dated November 10, 2021, that stated that the Project is not within the aboriginal territories of the tribe, and referred the City to UAIC, Wilton Rancheria, and Shingle Springs. All three of these tribes had already received Project notices, as described above. None of the other tribes responded to the opportunity to consult.

Evaluation of Tribal Cultural Resources

Questions a (i): No Impact. Based on the records search at the NCIC and other efforts discussed in Section V, Cultural Resources, no resources listed or eligible for listing in the California Register of Historic resources of local register or historical resources were identified. The project would have no impact.

Question a (ii): Less than significant with mitigation. Information about tribal cultural resources under AB 52 and tribal cultural places under SB 18 was drawn from multiple sources, including the tribal consultation as summarized above, records searches and literature reviews with the California Historical Resources Information System, a review of existing ethnographic information, and a cultural resources survey (HELIX 2021) that included an analysis of buried site potential. Of these sources, most did not result in any information to indicate the presence of a tribal cultural resource or a tribal cultural place within the Project Area. Only the tribal consultation process, summarized above, produced information that requires further discussion.

The UAIC submitted information that heritage trees, in general, are important to the tribal community because they “have born witness to history and human interactions and are thought to hold a collective memory that is remembered and passed down from generation to generation. These resources also provide continuity between the past, present, and future.” UAIC also noted that “heritage trees not only provide an important ecological function, but they also play an important role in UAIC’s social and cultural identity” (Appendix I). According to the arborist survey for the project, one of the nine native oak trees present on the property is considered a heritage tree. This heritage tree will remain in place with a suitable buffer during construction to maintain tree integrity and minimize impact to the root zone, trunk, and canopy.

CEQA and SB 18 require that the City measure the information about the importance of heritage trees against the definitions of tribal cultural resources and tribal cultural places, as cited in Section 21074(a) of the PRC and Sections 5097.9 and 5097.995 of the PRC, respectively, while taking into account the
expert knowledge of the Tribe. First, Section 21074(a) of the PRC defines tribal cultural resource for the purpose of AB 52 and CEQA. While heritage oak trees are not resources that are made, modified, or moved by a human, and do not constitute cultural resources, and although the field survey by professional archaeologists did not reveal any indication that past human activity was associated with the specific heritage tree in the Project Area, the UAIC ascribes additional importance to heritage trees and recommended avoidance and preservation to the City. The information provided does not provide substantial evidence, as defined in PRC Section 21080, about the one oak tree would, specifically, qualify as a TCR, but the recommendation to avoid it is consistent with the City’s Tree Preservation Ordinance and the Project’s plans. In addition, UAIC informed the City that standard mitigation measures for unanticipated discovery would be sufficient for any TCRs that are archaeological in nature, if encountered during construction (see Mitigation Measure TCR-1, below). Second, Sections 5097.9 and 5097.993 of the PRC define the types of resources that would constitute a tribal cultural place pursuant to SB 18. Neither tribal consultation nor examination of other lines of evidence revealed the presence of any resource meeting these definitions.

Therefore, although the information provided about heritage trees does not meet the criteria for being considered a TCR under CEQA, the importance of heritage trees to the tribal community should be recognized as such, and taken into account for future project planning in Folsom. For this project, because the single heritage tree present on the property will be preserved in place, there would be no impact to a known TCR or a tribal cultural place. However, there remains the possibility that ground-disturbing activity could reveal the presence of a TCR or tribal cultural place that is archaeological in nature, and if present, the effect could be adverse. As supported by UAIC, implementation of unanticipated discovery procedures, as provided in Mitigation Measure TCR-1 below, would reduce that impact to a less than significant level (ECORP 2022).

Mitigation Measure TCR-1: Unanticipated Discovery of Tribal Cultural Resources. If any suspected TCRs are discovered during ground disturbing construction activities, all work shall cease within 100-feet of the find, or an agreed upon distance based on the Project Area and nature of the find. A Tribal Representative from a California Native American tribe that is traditionally and culturally affiliated with a geographic area shall be immediately notified and shall determine if the find is a TCR (PRC §21074). The Tribal Representative will make recommendations for further evaluation and culturally appropriate treatment as necessary. If deemed necessary by the City, a qualified cultural resources specialist meeting the Secretary of Interior’s Standards and Qualifications for Archaeology may also assess the significance of the find in joint consultation with Native American Representatives to ensure that Tribal values are considered. Work at the discovery location may not resume until the City, in consultation as appropriate and in good faith, determines that all necessary investigation and treatment of the discovery under the requirements of CEQA, including AB52, have been satisfied.
XVIII. UTILITIES AND SERVICE SYSTEMS

<table>
<thead>
<tr>
<th>UTILITIES AND SERVICE SYSTEMS:</th>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>g) Comply with federal, state, and local statutes and regulations related to solid waste?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

Environmental Setting

Existing utilities on the project site include SMUD for electricity, PG&E underground gas lines, AT&T underground telephone lines, City of Folsom for solid waste disposal, and City of Folsom water and sewer facilities. The City of Folsom employs a design process that includes coordination with potentially affected utilities as part of project development. Identifying and accommodating existing utilities is part of the design process, and utilities are considered when finalizing public project plans. The City of Folsom coordinates with the appropriate utility companies to plan and implement any needed accommodation of existing utilities, including water, sewer, telephone, gas, electricity, and cable television lines. Based on the results of an initial request for comments from the utility providers, all utility services are able to accommodate the proposed project.

Evaluation of Utilities and Service Systems

Questions a, b, e: No Impact. The City of Folsom is responsible for managing and maintaining its wastewater collection system. This system ultimately discharges into the Sacramento Regional County Sanitation District interceptor sewer system. Wastewater is treated at the Sacramento Regional Wastewater Treatment Plant, located in Elk Grove (City of Folsom 2018).
In compliance with the 2006 State Water Resources Control Board (SWRCB) General Waste Discharge Requirements for Sanitary Sewer Systems, the City of Folsom adopted a Sewer System Management Plan (SSMP) on July 28, 2009. The SSMP has been revised every five years, with the newest version approved on July 23, 2019. The plan outlines how the municipality operates and maintains the collection system, and the reporting of all Sanitary Sewer Overflows (SSO) to the SWRCB’s online SSO database. Because the City has sufficient capacity to accommodate any additional demand that could result from implementation of the proposed project, and because the City is in compliance with statutes and regulations related to wastewater collection and treatment, there would be no impact and mitigation would not be necessary.

Question c: Less than Significant Impact. Folsom’s Public Works Department handles all stormwater management issues for the City, from design and construction of the storm drain system to operation and maintenance, and urban runoff pollution prevention (City of Folsom 2018). Stormwater drains would be installed throughout the site, and curb and gutter would be installed along the parking areas to collect stormwater flows and prevent flooding or ponding. On-site stormwater management facilities would include bioretention basins, Contech filters, and disconnected roof drains which would treat and dissipate stormwater prior to entering the City’s system. With implementation of these measures, environmental impacts from expanding the stormwater facilities would be less than significant and no mitigation would be necessary.

Question d: Less than Significant Impact.

Water Supply

Folsom’s Water Treatment Plant has a capacity of 50 million gallons per day. According to the City of Folsom General Plan Housing Element, the combination of treated and untreated water demands (through the time frame of the Housing Element which is 2021) are not anticipated to exceed the City’s current water entitlements of 34,000 acre-feet annually (City of Folsom 2013). Because sufficient supplies are available, no additional facilities would need to be constructed or expanded and impacts would be less than significant.

Question f, g: No Impact. The City of Folsom provides solid waste, recycling, and hazardous materials collection services to its residential and business communities. In order to meet the State mandated 50 percent landfill diversion requirements stipulated under AB 939, the City has instituted several community-based programs. The City offers a door-to-door collection program for household hazardous and electronic waste, in addition to six “drop off” recycling locations within the City. An offsite sewer analysis was completed by Water Works Engineering, at the request of the City of Folsom. The analysis concluded that the backbone of the existing sewer collection system has the capacity to support the development (Water Works Engineering 2021).

After processing, solid waste is taken to the Kiefer Landfill, the primary municipal solid waste disposal facility in Sacramento County. The landfill facility sits on a site of 1,084-acres in the community of Sloughhouse. Currently 250-acres, the State permitted landfill is 660-acres in size and is of sufficient capacity to accommodate the solid waste disposal needs of the City of Folsom. Because the landfill serving the project area is of sufficient capacity to accommodate solid waste needs, no impact would occur, and no mitigation would be necessary.
XIX. MANDATORY FINDINGS OF SIGNIFICANCE

<table>
<thead>
<tr>
<th>MANDATORY FINDINGS OF SIGNIFICANCE:</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td>Potential Impact</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The lead agency shall find that a project may have a significant effect on the environment and thereby require an EIR to be prepared for the project where there is substantial evidence, in light of the whole record, that any of the following conditions may occur. Where prior to commencement of the environmental analysis a project proponent agrees to MMs or project modifications that would avoid any significant effect on the environment or would mitigate the significant environmental effect, a lead agency need not prepare an EIR solely because without mitigation the environmental effects would have been significant (per Section 15065 of the State CEQA Guidelines):

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are significant when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of past, present and probable future projects)?

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

Environmental Setting

Evaluation of Mandatory Findings of Significance

Question a: Less than Significant with mitigation. The preceding analysis indicates that the proposed project has the potential to adversely affect biological, cultural, and tribal cultural resources. See Sections IV, V, and XVII of this Initial Study for discussion of the proposed project's potential impacts on these environmental issue areas. With implementation of the mitigation measures identified in those Sections, and compliance with City programs and requirements identified in this report, impacts would be reduced to a less than significant level. No significant or potentially significant impacts would remain.
Question b: Less than Significant with mitigation. While the project would indirectly contribute to cumulative impacts associated with increased urban development in the city and region, these impacts have previously been evaluated by the City and considered in development of the City’s General Plan as set forth in this Initial Study. Key areas of concern are discussed in detail below.

Evaluation of cumulative biological resources impacts: Implementation of the proposed project, with continued growth within Folsom would contribute to continued loss of habitat for biological resources by converting undeveloped area to developed uses. There is currently no suitable habitat for special-status plant species in the project site and there have been no reported occurrences of special-status plant species on or adjacent to the project site in the CNDDB. Special-status plant species are not expected to occur in the project site or be impacted by the proposed project. No special-status wildlife species were observed in the project site during the biological reconnaissance survey and there are no reported occurrences in the CNDDB of special-status animal species in or adjacent to the project site. However, the project site provides marginal habitat for burrowing owl (Athene cunicularia) and white-tailed kite (Elanus leucurus) as well as habitat for nesting birds and raptors such as the mourning dove (Zenaida macroura), house finch (Haemorhous mexicanus), and acorn woodpecker (Melanerpes formicivorus). Nests were not observed during surveys; however, a variety of migratory birds have the potential to nest in and adjacent to the project site, in trees, shrubs and on the ground in vegetation. With implementation of Mitigation Measures BIO-01 and BIO-02, the potential impacts to the burrowing owl and the nesting birds and raptors due to project implementation would be reduced to a less than significant level. Additionally, there are a total of 14 trees found on the project site; one tree (#702) is on Lot 1 and the remaining trees are on Lot 6. Nine of the trees are blue oaks, three are cork oaks, and two are valley oaks. With implementation of Mitigation Measure BIO-03, trees in the project site would be protected from removal and from ground disturbance and potential impacts would be minimized. As a result, with implementation of Mitigation Measures BIO-01, -02, and -03 the proposed project would not result in significant cumulative impacts to protected biological resources, and no additional mitigation measures would be needed.

Evaluation of cumulative cultural resources impacts: A database records search was conducted for the project site, including a 0.25-mile buffer area, at the North Central Information Center at Sacramento State University. Additionally, a pedestrian survey was undertaken of the project site by a senior archaeologist. The City recognizes that sensitive and/or protected resources could be unintentionally discovered during project construction. With implementation of Mitigation Measures CUL-01 and CUL-02, the impacts relating to unanticipated discoveries would be reduced to a less than significant level and potentially cumulative effects would be avoided. No additional mitigation measures would be needed.

Evaluation of cumulative greenhouse gas (GHG) impacts: GHG emissions would be generated by the project during construction (vehicle engine exhaust from construction equipment, on-road hauling trucks, vendor trips, and worker commuting trips) and during long-term operation (electricity and natural gas use, electricity resulting from water consumption; solid waste disposal, and vehicle engine exhaust). GHG impacts were evaluated the City’s Greenhouse Gas Reduction Strategy Consistency Checklist, which was completed by HELIX. The project would be consistent with the City’s GHG Strategy through Mitigation Measures GHG-1 through -5. Mitigation Measure GHG-1 would provide a minimum of five percent more bicycle parking than required in the City’s Municipal Code Section 17.57.090 (for a total of 54 bicycle parking spaces). Mitigation Measure GHG-2 would use high-performance diesel (also known as Diesel-HPR or Reg-9000/RHD) for all diesel-powered equipment utilized in construction of the project. Mitigation Measure GHG-3 would provide electric vehicle charging stations in five percent of
the total surface parking spaces on the project site (for a total of 16 EV charging stations). Mitigation Measure GHG-4 would divert to recycle or salvage a minimum 65 of nonhazardous construction and demolition waste generated at the project site in accordance with Appendix A4 (Residential) of the as outlined in the California Green Building Standards Code (2019 CALGreen). Mitigation Measure GHG-5 would comply with all applicable indoor and outdoor water efficiency and conservation measures required under 2019 CALGreen Tier 1, as outlined in the California Green Building Standards Code. With Mitigation Measures GHG-1 through -5, potentially cumulative impacts would be avoided, and no additional mitigation measures would be needed.

Evaluation of cumulative noise impacts: Noise impacts were evaluated in Noise Analysis, prepared by Bollard Acoustical, May 3, 2021 and revised by HELIX in 2021. Construction noise generated by the project would result in short-term substantial noise increases compared to baseline existing conditions. The implementation of Mitigation Measure NOI-1 would restrict construction to daytime and minimize noise levels to surrounding residential uses. With this mitigation, potentially cumulative impacts would be avoided, and no additional mitigation measures would be needed.

Evaluation of cumulative transportation impacts: Cumulative transportation impacts were evaluated in the Folsom Corporate Center Apartments Transportation Impact Study (T. Kear Transportation Planning and Management, Inc., 2021). Under existing 2021 conditions with the project, the westbound left-turn queue during the AM peak hour exceeds available storage, and the project is anticipated to add 1 vehicle to the queue. Additional queued vehicles can contribute to LOS impacts when queues are longer than available storage and “spill-back” can affect the capacity of adjacent lanes. In order to avoid impacts to the westbound left-turn queue during the AM peak, Mitigation Measure TRA-1 would be implemented. Additionally, under the EPAP 2026 conditions with the project, the westbound left-turn queue during the AM peak hour exceeds the available storage, and the project is anticipated to add 1 vehicle to the queue, contributing to potential LOS impacts. Similar to the existing 2021 conditions, in order to avoid impacts to the westbound left-turn queue, Mitigation Measure TRA-2 would be implemented. With the implementation of Mitigation Measures TRA-1 and TRA-2, the project would have a less than significant effect on traffic operations under 2021 conditions and under 2026 conditions with the addition of project traffic. Therefore, the proposed project would result in a less than significant impact to project circulation under cumulative conditions.

Evaluation of cumulative tribal cultural resources impacts: The City of Folsom sent project notification letters to the three California Native American tribes named on the City's AB 52 contact list. The only tribe to respond was the UAIC. On behalf of the City, ECORP contacted the California NAHC, to request a list of tribal contacts under SB 18. The two tribes to respond were UAIC and Yocha Dehe Wintun Nation. UAIC informed the City that standard mitigation measures, Mitigation Measure TCR-1, for unanticipated discovery would be sufficient for any TCRs that are archaeological in nature, if encountered during construction. As supported by UAIC, implementation of unanticipated discovery procedures, as provided in Mitigation Measure TCR-1, would reduce impacts to a less than significant level and therefore, potentially cumulative impacts would be avoided. No additional mitigation would be required.

Question c: Less than Significant Impact. Because of site conditions, existing City regulations, and regulation of potential environmental impacts by other agencies, the proposed project would not have the potential to cause substantial adverse effects on human beings as demonstrated in the evaluation contained in this Initial Study.
<table>
<thead>
<tr>
<th>Intersection</th>
<th>Traffic Control</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction Year</td>
<td>Construction Year</td>
<td>Construction Year</td>
</tr>
<tr>
<td></td>
<td>No Project</td>
<td>+ Project</td>
<td>No Project</td>
</tr>
<tr>
<td></td>
<td>Delay(^2)</td>
<td>LOS(^3)</td>
<td>Signal Warrant?(^4)</td>
</tr>
<tr>
<td>Iron Point Road/McAdoo Drive</td>
<td>Signal</td>
<td>20.2</td>
<td>C</td>
</tr>
<tr>
<td>Iron Point Road/Gak Avenue Parkway</td>
<td>Signal</td>
<td>22.8</td>
<td>C</td>
</tr>
<tr>
<td>Iron Point Road/Rowberry Drive</td>
<td>Signal</td>
<td>16.5</td>
<td>B</td>
</tr>
<tr>
<td>Iron Point Road/Project Access</td>
<td>Side St. STOP(^5)</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Source: Griffin Cove Transportation Consulting 2018b.

Notes:
2. Average control delay (seconds per vehicle).
3. Level of service.
5. Delay value represents the worst-case movement/approach.
10.0 MITIGATION MONITORING AND REPORTING PROGRAM

A Mitigation Monitoring and Reporting Program (MMRP) has been prepared by the City per Section 15097 of the CEQA Guidelines and is presented in Appendix J.

11.0 INITIAL STUDY PREPARERS

City of Folsom
Steve Banks, Principal Planner
Mark Rackovan, Traffic Engineer

HELIX Environmental Planning, Inc.
Robert Edgerton, AICP CEP, Principal Planner
Julia Pano, Environmental Planner
Jason Runyan, Noise Specialist
Stephen Stringer, Senior Biologist
Stephanie McLaughlin, Field Biologist
Victor Ortiz, Air Quality Specialist
Martin Rolph, Air Quality/Energy Specialist
Clarus Backes, Senior Archaeologist
John DeMartino, GIS
12.0 REFERENCES

HELIX Environmental Planning. 2021. Biological Resources Inventory. Folsom Corporate Center

SCS Engineers. (2021). Biological Resources Memo. 2021

State Division of Mines and Geology. 2015. United States Seismic Zones Map.

___ 2004. Traffic Noise Model Version 2.5. Available at:

US Fish and Wildlife Service (USFWS). 2021. Information for Planning and Consultation (IPaC). List of threatened and endangered species that may occur in your proposed project location and/or be affected by your proposed project.

Attachment 23

SMAQMD ISMND Response Letter
Dated March 24, 2022
March 24, 2022

Steven Banks
City of Folsom Community Development Department
50 Natoma Street
Folsom Cordova, CA 95630
sbanks@folsom.ca.us

Subject: Folsom Corporate Center Apartments Mitigated Negative Declaration (SAC202102624)

Dear Steven Banks:

Thank you for providing the Folsom Corporate Center Apartments Mitigated Negative Declaration (MND) to the Sacramento Metropolitan Air Quality Management District (Sac Metro Air District) for review. The project includes a general plan amendment, rezone, planned development permit, design review and tree removal permit, for the construction and operation of a 253-unit multi-family apartment community on two parcels in the Folsom Corporate Center. Sac Metro Air District staff comments to improve health and air quality and reduce greenhouse gas emissions (GHG) follow.

Comments on the MND
The Air Quality section of the MND includes measure AIR-1, requiring a mechanical ventilation system that accommodates filters having a Minimum Efficiency Reporting Value (MERV) rating of 13 or higher to reduce resident exposure to toxic air contaminant emissions from Highway 50. Note that this is already required by the 2019 Building Energy Efficiency Standards.

To provide further protection of residents, Sac Metro Air District recommends:
- The landscape plan includes a continuous vegetative barrier along the southern, western, and eastern perimeter of the project consistent with the Sac Metro Air District’s Landscaping Guidance for Improving Air Quality Near Roadways. If a continuous barrier along the perimeter is not feasible, provide dense plantings where feasible and especially between the outdoor gathering areas and Highway 50.

The GHG section of the MND notes that the project includes onsite photovoltaic electricity generation, demonstrating consistency with Folsom’s GHG Reduction Strategy measure E-1, Building Energy Sector. Sac Metro Air District recommends the project consider additional energy related measures, which provide a co-benefit of reducing the urban heat island effect:

• Install certified cool roofs. The California Energy Commission’s Title 24, Part 6, suggests an aged solar reflectance of at least 0.63 for low-sloped roofs and at least 0.20 for steep-sloped roofs, and a minimum thermal emittance of 0.75. The Cool Roof Rating Council provides a product directory of roofs to assist. Cool roofs reduce the temperature of the buildings, requiring less energy to keep the buildings cool in the summer.
• Install solar photovoltaic shade structures over the parking lot planned under the overhead power lines on lot 1 since tree planting will be constrained. This will reduce urban heat island effect from the parking lot, generate renewable energy, and provide shading to parked vehicles to reduce their emissions of volatile organic compounds.

Comments on Site Design
Sac Metro Air District commends the project for providing infill housing near jobs and commercial uses, which can lead to reduced vehicle miles traveled (VMT) and reduced emissions. To further provide the opportunity for residents to reduce VMT, supporting Folsom General Plan Policies M 2.1.3 – Pedestrian and Bicycle Linkages, M 3.1.1 – Access to Public Transit, and NCR 3.1.3 – Reduce Vehicle Miles Traveled, Sac Metro Air District recommends the following improvements in bicycle/pedestrian connectivity:
• Include a direct connection from the north side of lot 6 to Iron Point Road. Convenient access to the existing sidewalks and bike lanes on Iron Point Road will connect lot 6 residents to the nearby transit stop and other commercial areas along Iron Point Road.
• Include a complete sidewalk network along the unnamed road bordering lot 6 and along Rowberry Drive bordering lot 1 to minimize pedestrian barriers and provide safe, convenient connections for residents to the surrounding land uses.
• Consider including a pedestrian gate from lot 1 that could allow a future connection to the planned class 1 bicycle trail south of the project, along Highway 50.

Rules Statement
All projects are subject to Sac Metro Air District rules in effect at the time of construction. A link to a list of the most common rules that apply during construction is included in the footnote. A complete listing of rules is available at www.airquality.org or by calling 279-207-1122.

Naturally Occurring Asbestos
The project site is in an area that may contain naturally occurring asbestos, as identified on Sac Metro Air District’s Naturally Occurring Asbestos in Eastern Sacramento County Parcels map. Areas identified on the map are required prior to construction to either submit an Asbestos Dust Mitigation Plan or test out of the requirements of the Airborne Toxic Control Measure for Construction, Grading, Quarrying, and Surface Operations. More information can be found on the Sac Metro Air District’s website or by contacting Daniel Noakes at 916-826-6366 or dnoakes@airquality.org. Folsom’s construction specifications also include a reminder of these requirements.

3 Cool Roof Rating Council product directory: https://coolroofs.org/directory
5 Asbestos map: http://www.airquality.org/StationarySources/Documents/NOA_Parcel redux.pdf
6 Sac Metro Air District’s asbestos website: http://www.airquality.org/businesses/asbestos/asbestos-in-soil
Please contact me at 279-207-1131 or khuss@airquality.org if you have any questions regarding these comments.

Sincerely,

Karen Huss
Associate Air Quality Planner/Analyst

cc: Paul Philley, AICP, CEQA and Land Use Program Supervisor
Attachment 24

Folsom Corporate Center
Planned Development Guidelines
FOLSOM CORPORATE CENTER
PLANNED DEVELOPMENT GUIDELINES

15 March 2000, revised 21 June 2000
DEVELOPMENT STANDARDS

- Total Gross Building Area: 1,425,000 square feet, provided all building and site designs meet all development standards.
- Building Setbacks:
 - Front yard: 30' along Iron Point Road.
 - Side yard: 5' or as required by building code.
 - Street side yard: 15'.
 - Rear yard: No requirement except as required by building code or other requirements.
 - Highway 50 frontage: 50 feet.
- Building Heights:
 - 4 story, not to exceed 80'** at parapets.
 - 3 story, not to exceed 60'** at parapets.
 - 2 story, not to exceed 40'** at parapets.
 - *Building height may increase at specific areas required for mechanical screening.
- Building Coverage: no requirement.
- Parking Requirements:
 - Offices: 1 space per 250 square feet of gross floor area.
 - Commercial uses and other ancillary retail: 1 space per 200 square feet of gross floor area.
- All required parking areas will meet City of Folsom requirements for dimensions, paving, disabled parking, and bicycle racks, per chapter 17.57 of the Folsom Zoning Codes.
- Pedestrian regulations:
 - Primary walkways will link street access, bus stops, parking areas, and buildings
 - Pedestrian safety and health will be a design focus.
 - Walkways will be landscaped to provide summer shade.
 - Parking areas will feature pedestrian connectors within parking stalls to facilitate safe travel through the parking area.
 - Textured/colored paving, or a change to materials, will delineate pedestrian connectors at intersections with parking areas and drives. Landscaping will delineate pedestrian walks elsewhere.
 - Disabled access will conform to State and Federal ADA regulations.
- Bicycle regulations:
 - Adequate space and access will be provided for bicycle racks per Folsom Zoning Code 17.57.090.
 - Bicycle racks will be provided near building entrances.
- Loading Areas:
 - Loading areas will be screened from public view by landscaping, walls, or other means to minimize their visibility from public streets. Where structural screen barriers are used, they shall be a minimum of 6 feet in height to adequately hide equipment and loading areas.
 - Materials used for screen barriers should be compatible and similar in quality to materials used for that site’s buildings.

Folsom Corporate Center Planned Development Guidelines
SITE DESIGN

Elements

Enhanced Paving:
- Signifies entries, emphasizes intersections, creates informal meeting places.
- Adds clarity between pedestrian and driving routes.
- May be of embossed A.C. paving or colored concrete, or exposed aggregate.

Pedestrian Connectors:
- Defined with landscaping and materials.
- Routes differentiated with specific palettes of landscape materials.
- Will ease navigation through parking fields to and from a building.

Pedestrian Crossings:
- Differentiated by enhanced paving.
- Located where pedestrian connectors intersect parking areas or drives.
- Not required at every row.
The Folsom Corporate Center Planned Development Guidelines, in respect to overall architectural design concepts, are intended to provide a framework for design, not restrict creativity. Building developments are encouraged to share a common architectural language, be sensitive to energy conservation, and respond to outward site forces.

Bordered by major roadways, the overall site is highly visible. Since the buildings will be visible from 360 degrees, no elevation can be called the back and design should respond accordingly. Building masses should be made human in scale, present varied elevations and use accent materials to add to the variety.

Materials such as tile, stone, glass, metal panels, and concrete, when used together, will reflect the area's modernity, diversity, and traditions, while maintaining a harmonious relationship with the other structures, developments, and communities in the vicinity. The materials used shall be consistent with those mentioned within these Planned Development Guidelines, as approved by the City of Folsom Planning Commission.
Building forms relate to a specific site, providing variety and interest.
- Accentuated with color, lighting, and landscaping.
- Consistent use of elements will unify structures.
- Groves of Native Oaks are an important design element.

The building base can be articulated and defined with darker colors or materials.
- Pedestrian visual interest shall be strengthened with patterns, textures or materials where appropriate, such as the use of a natural stone to accent a building's entries.
- Materials:
 - Primary surface materials shall cover no more than 80% of the exterior vertical walls and may be tilt-up concrete, pre-cast concrete, Exterior Insulated Finish System, glass, aluminum panels, aluminum window frames, or metal panels.
 - Accent materials will cover approximately 20% of the exterior vertical walls and may include stone, metal or aluminum panels, slate, or tile.
ENTRIES:

- Entries shall be distinguished with accent materials, such as stone or slate, colored metal panels, and concrete.
- Enhanced paving shall be used at entrances, either embossed A.C. paving, colored concrete, or exposed aggregate.
- Entry facades may be accented with special lighting, secondary signage, graphics, or colors.

PARAPETS:

- Parapets shall conceal any roof mounted equipment as seen from adjacent roads and parking.
- Mechanical penthouse or screen forms are also acceptable when finished to match materials used on adjacent wall surfaces. The penthouse shall maintain a similar quality of construction.
- Changes in parapet height may be used to keep a human scale, accent entries, or articulate building elements.
- Cornices may be used to provide variety and express the building form at key locations.
Service areas, loading docks, and trash enclosures shall be separated from public spaces by solid screen walls or landscape buffers. The screen wall design shall be consistent with the wall design and colors of the more prominent building elements.

- Exposed roofing or canopies, visible from the ground, may be metal, glass, simulated slate, or Kalwall glazing.
- Sunscreens may be canvas, metal, or Kalwall.
- Exterior glass shall be high performance glazing, and may be clear, lightly tinted, reflective, or spandrel glass.
Parking lot lighting shall be 15'-0" high at the circulation paths of the site, and no higher than 30'-0" at the parking areas.

- Lighting under power lines will be 15'-0" high.
- Wall mounted security lighting may be located at the service areas and at the perimeter of buildings.
- Entry drive lights may be decorative fixtures with a maximum height of 15'-0".
- Combination of accent, walkway & pedestrian-type lighting shall be used to illuminate pedestrian walkways.
- Exterior lighting shall be shielded to avoid off-site glare.
- Lights will be high pressure sodium.
- Wall areas may be highlighted by wall washing fixtures.
SIGN CRITERIA:

- Signs (directional and monument), visible from the street, shall be coordinated within the entire development for the mutual benefit of all occupants.
- While flexibility of design is encouraged, visual harmony shall be maintained.
- A sign application for each project shall be submitted to the City of Folsom Planning Department for review and approval prior to permit approval.
- All sign applications shall comply with the sign criteria, the City of Folsom Sign Requirements (chapter 17.59), city building codes, and the Uniform Sign Code, as from time to time amended.
- Conformity to the sign criteria shall be enforced by the landlord.
- Any non-conforming or unapproved sign shall be brought into conformity at the tenant's expense.
- Any sign between 30" and 6' above the adjacent grade at any corner formed by an intersection of 2 or more streets shall not obstruct the cross-visibility area as measured by a triangle having 2 sides 35' long and running along each curb line, and a third side connecting the ends of the other 2 lines.

MONUMENT SIGNS:

- Freestanding monument signs may be placed in the landscape areas facing common drives to identify tenants of individual buildings.
- Signs shall be adjacent to access driveways. No more than one sign per driveway shall be allowed.
- Signs shall be located a minimum of 15 feet from the back of the curb along Iron Point Road and any internal drive's right of way when space permits. Signs shall be placed outside of vehicular sight lines.
- Allowable signs are subject to all applicable ordinances of the City of Folsom Sign Ordinance.
- Sign size shall be a maximum of 6'-0" high by the maximum square footage of text for that sign.
- Monument signs shall be concrete, CMU and/or metal.
- Signs shall be illuminated by exterior ground uplighting. No internal illumination shall be permitted.
SIGNAGE

BUILDING SIGNS:

- The maximum allowable sign area is 1 1/2 square feet for each lineal foot of building frontage, up to a maximum of 150 square feet on each building.
- Wall signs and canopy signs shall count towards the maximum sign area.
- Building signs may be placed on building frontages facing a street, parking lot, or Highway 50.
- Signs shall not be located above the top of parapet, project more than 18 inches from the building wall, nor exceed 75 percent of the building frontage.
- Freestanding signs shall be set back 5 feet from the public right of way and located outside of any clear vision triangles (see page 16). Signs will comply with chapter 17.59 of the Folsom Zoning Code.
The Evergreen Folsom Project should serve as the transition zone between the manicured ornamental landscape of the Broadstone Development and the oak woodlands adjacent to Highway 50. The new landscape should avoid creating a hard edge between the natural and developed landscape by bringing both types of plantings into the project in a manner that allows the transition zones to occur within the parking lots and landscape easements, rather than at the perimeter of the sites.

Highway 50 passes through oak woodlands all along the south side of Folsom with the exception of the east end of this project, where no trees are present. As a part of this project, the oak woodlands will be extended east, along Highway 50, to provide a buffer from the freeway (these extended areas will not be considered a part of the "common areas").

Landscape areas will enhance the office environment. Plantings should assist users in orienting themselves on the site and keep them as comfortable as possible during the hot summer months. Attractive views should be enhanced and detrimental views should be screened.

- All work shall conform with the City of Folsom's applicable codes, including, but not limited to, the City of Folsom Landscaping Guidelines and Tree Preservation Ordinance.
- Those plants which have not performed well previously in Broadstone, particularly Alder and Red Oak, shall be used minimally, if at all.
- Native Oaks shall be retained throughout the project wherever possible. Existing Oaks which are to remain shall be protected from damage. Within a circle two times the size of the canopy diameter, irrigation systems shall be designed to minimize damage to feeder roots and plant species will be tolerant of very limited water after establishment.
- All landscape areas shall be automatically irrigated using water efficient distribution systems.
- Trees shall be a minimum of 15 gallons in size, except where smaller containers can be used to minimize damage to existing trees or promote better rooting habits among native species.
- A minimum of 50% of the total quantity of shrubs shall be 5 gallon size.
- Groundcovers and Perennials should be a minimum of 1 gallon in size.
- Plant Palettes are included in these Guidelines to provide consistency throughout the project but are not intended to prevent the addition of other species that may enhance the planting concept.
LANDSCAPE DESIGN

HIGHWAY FRONTAGE AND AREAS ADJACENT TO OAK WOODLANDS:

- A 50 foot landscape easement shall be provided along the Highway 50 frontage.
- An Oak Woodland shall be established along Highway 50 to act as a buffer for the Project.
- Trees should be clustered to provide controlled views of project buildings.
- Shrubs should be used as necessary to obscure the view of the freeway from parking areas and
 the ground floor of the buildings.
- Mowed or manicured turf should generally not be used in this area.
- Tree Palette:
 - Redbud (Cercis spp.) multi-trunked
 - Afghan Pine (Pinus eldarica)
 - Aleppo Pine (Pinus halepensis)
 - Stone Pine (Pinus pinea)
 - Chinese Pistachio (Pistacia chinensis)
 - California Sycamore (Platanus racemosa) multi-trunked
 - Blue Oak (Quercus douglasii) some multi-trunked
 - Valley Oak (Quercus lobata)
 - Cork Oak (Quercus suber)
 - Interior Live Oak (Quercus wislizenii) multi-trunked

- Shrub Palette:
 - Strawberry Tree (Arbutus spp.)
 - Manzanita (Arctostaphylos spp.)
 - California Lilac (Ceanothus spp.)
 - Parney Cotoneaster (Cotoneaster lacteus)
 - Silverberry (Elaeagnus pungens "Fruitland")
 - Molate Fescue (Festuca rubra "Molate")
 - Toyon (Heteromeles arbutifolia)
 - Assorted Ornamental Grasses (Miscanthus sinensis, Muhlenbergia rigens, Pennisetum spp.,)

IRON POINT ROAD FRONTAGE:

- A 30 foot Landscape Easement shall be maintained along the frontage of Iron Point Road.
- A pedestrian pathway shall occur along the entire length of Iron Point Road. The pathway
 shall meander except in areas of restricted width where existing boulder rip-rap is installed.
 The pathway in constricted areas shall be adjacent to the back of curb.
- Street trees shall be randomly clustered in a quantity at least equal to one tree per 35 feet of
 linear frontage (excluding driveways). Areas where rock rip-rap constricts the frontage area
 are exempt from this requirement. Street trees will be located at least 5' from the street curb
 and the meandering sidewalk. Street trees will be planted a maximum of 10 feet from the
 street curb or the back of sidewalk, as appropriate.
LANDSCAPE DESIGN

IRON POINT ROAD FRONTAGE (CONTINUED):

- The street trees along Iron Point Road shall not include White Alder (Alnus rhombifolia), which are planted on the other side of the street, due to severe borer infestations of this species in the past 5 years.
- The primary ground-plane planting shall be turf, which will meander with the walk.
- Shrub and groundcover plantings should be kept simple in order to emphasize project entries. These areas should occur primarily behind the meandering walk.
- Parking areas shall be screened by plant material or landform to a minimum height of 30 inches at plant maturity unless such screening obscures visibility at intersections.
- Tree Palette:
 - Afghan Pine (Pinus edulis)
 - Aleppo Pine (Pinus halepensis)
 - Stone Pine (Pinus pinea)
 - London Planetree (Platanus acerifolia "Bloodgood")
 - Burr Oak (Quercus macrocarpa)
 - Cork Oak (Quercus suber)
- Shrub and Groundcover Palette:
 - Manzanita (Arctostaphylos spp.)
 - California Lilac (Ceanothus spp.)
 - Prostrate Cotoneaster (Cotoneaster dammeri “Lowfast”)
 - Compact Escallonia (Escallonia x. “Terri”)
 - Juniper (Juniperus spp.)
 - Coffeeberry (Rhamnus californica “Eve Case”)
 - Dwarf Indian Hawthorn (Rhaphiolupins indica “Ballerina”)
 - Evergreen Current (Ribes viburnifolium)
 - Prostrate Rosemary (Rosmarinus officinalis spp.) deep blue varieties
 - Compact Laurustinus (Viburnum tinus “Spring Bouquet”)

DRIVEWAY INTERSECTIONS:

- Plantings adjacent to the driveways at Iron Point Road should maximize seasonal color and use a variety of colors and textures to draw attention to the intersection.
- Formal arrangements of plantings should be considered to increase the contrast with the streetscape plantings.
- All intersections should not be planted in the same manner in order to assist users in orientation.
- Mature plantings should never obscure visibility for drivers.
LANDSCAPE DESIGN

DRIVEWAY INTER SECTIONS (CONTINUED):

- Tree Palette:
 - Crape Myrtle \((Lagerstroemia \times)\) Indian tribe hybrids
 - Flowering Pear \((Pyrus calleryana varieties)\)
 - Afghan Pine \((Pinus eldarica)\)
 - Aleppo Pine \((Pinus halepensis)\)
 - Stone Pine \((Pinus pinea)\)
 - Coast Redwood \((Sequoia sempervirens)\) background as space allows

- Shrubs and Groundcovers: Plants from the Frontage Palette should be used to provide visual continuity with the intersections and the streetscape. Accent plantings are to be chosen at the designer’s discretion.

INTERNAL ACCESS ROADS:

- Access roads within the various sites connect the parking areas and establish a major organizing element within the project. The landscape treatment should enhance this organization by emphasizing these roads.

- Driveways connecting to parking areas should be emphasized with accent plantings, but to a lesser extent than the driveway intersections at Iron Point Road.

- Mature plantings should never obscure visibility for drivers.

- Tree Palette:
 - Strawberry Tree \((Arbutus unedo)\)
 - Redbud \((Cercis spp.)\) multi-trunked
 - Crape Myrtle \((Lagerstroemia \times)\) Indian tribe hybrids
 - Tulip Tree \((Liriodendron tulipifera)\)
 - Stone Pine \((Pinus pinea)\)
 - Flowering Pear \((Pyrus calleryana “Aristocrat”)\)

- Shrub and Groundcover Palette:
 - Lily of the Nile \((Agapanthus orientalis)\)
 - Emerald Carpet Manzanita \((Arctostaphylos \times “Emerald Carpet”)\)
 - Prostrate Cotoneaster \((Cotoneaster dammeri “Lowfast”)\)
 - Fortnight Lily \((Dietes vegeta)\)
 - Dwarf Indian Hawthorn \((Rhaphiolepis indica “Ballerina”)\)
 - Prostrate Rosemary \((Rosmarinus officinalis spp.)\) deep blue varieties
 - Star Jasmine \((Trachelospermum jasminoides)\)
 - Turf \((Turf-Type Tall Fescue blends)\)
Trees shall be interspersed throughout the parking areas to shade at least 40% of the parking area, including access roads, after 15 years of growth.

Two distinctive types of planting will occur within the project parking lots consisting of "native" areas and an ordered planting of more exotic species. Plants in "native" areas should appear to be indigenous to the area.

The boundary between the two planting zones should meander through each project site, with the non-native plantings connecting to frontage and building areas and the native plantings connecting to the Highway 50 corridor and oak woodland plantings.

The proportion of one type of planting in relation to the other should vary from site to site as appropriate. For example, a site immediately adjacent to an oak woodland might have 80% of the parking area devoted to more native plantings, while a site further east might have a much higher percentage of non-native plantings.

Spacings between plants should be more random in the "native" zone.

Where parking area divider planters are perpendicular to significant pedestrian traffic, turf grass should be considered in the non-native areas and un-mowed Molate Fescue in the native areas.

"Native" Tree Palette:
- Strawberry Tree (*Arbutus unedo*) some multi-trunked
- European Hackberry (*Celtis australis*)
- Redbud (*Cercis spp.*) multi-trunked
- Afghan Pine (*Pinus eldarica*)
- Aleppo Pine (*Pinus halepensis*)
- Stone Pine (*Pinus pinea*)
- Chinese Pistache (*Pistacia chinensis*)
- London Planetree (*Platanus acerifolia "Bloodgood") most multi-trunked
- Coast Live Oak (*Quercus agrifolia*) some multi-trunked
- Blue Oak (*Quercus douglasii*) some multi-trunked
- Holly Oak (*Quercus ilex*)
- Valley Oak (*Quercus lobata*)
- Burr Oak (*Quercus macrocarpa*)
- Cork Oak (*Quercus suber*)

"Native" Shrub and Groundcover Palette:
- Emerald Carpet Manzanita (*Arctostaphylos x. "Emerald Carpet")
- McMinn Manzanita (*Arctostaphylos d. "Howard McMinn")
- Dwarf Coyote Brush (*Baccharis pilularis*)
- California Lilac (*Ceanothus spp.*) lower species or varieties
- White Rockrose (*Cistus hybridus*)
- Molate Fescue (*Festuca rubra "Molate")
- Assorted Ornamental Grasses (*Miscanthus sinensis, Muhlenbergia rigens, Pennisetum spp.*)
Non-Native Tree Palette:
- Crape Myrtle (Lagerstroemia x.) Indian tribe hybrids
- London Planetree (Platanus acerifolia “Bloodgood”) standard
- Flowering Pear (Pyrus calleryana “Aristocrat”)
- Chinese Elm (Ulmus parvifolia “Drake”)
- Sawleaf Zelkova (Zelkova serrata)

Non-Native Shrub and Groundcover Palette:
- Prostrate Cotoneaster (Cotoneaster dammeri “Lowfast”)
- Fortnight Lily (Dietes vegeta)
- Juniper (Juniperus spp.)
- Dwarf Indian Hawthorn (Rhaphiolepis indica “Ballerina”)
- Prostrate Rosemary (Rosmarinus officinalis spp.) deep blue varieties
- Star Jasmine (Trachelospermum jasminoides)
- Turf (Turf-Type Tall Fescue blends)

Deciduous trees may be used to shade the south and west sides of the buildings where they will not obstruct significant architectural features.

Trees should be located to avoid contact with buildings at maturity.

Utility areas should be screened from view but plantings should not obstruct access to utility areas.

Irrigation should be configured to avoid spraying windows.

Tree Palette:
- Maple (Acer spp.)
- Strawberry Tree (Arbutus unedo)
- Crape Myrtle (Lagerstroemia x.) Indian tribe hybrids
- Tulip Tree (Liriodendron tulipifera)
- Afghan Pine (Pinus eldarica)
- Flowering Pear (Pyrus calleryana “Aristocrat”)
- Coast Redwood (Sequoia sempervirens)
Shrub and Groundcover Palette:

- Lily of the Nile (Agapanthus orientalis)
- Emerald Carpet Manzanita (Arctostaphylos x. "Emerald Carpet")
- McMinn Manzanita (Arctostaphylos d. "Howard McMinn")
- Prostrate Cotoneaster (Cotoneaster dammeri “Lowfast”)
- Fortnight Lily (Dietes vegeta)
- Prostrate Juniper (Juniperus c. “San Jose”) or similar varieties
- Deer Grass (Muhlenbergia rigens)
- Heavenly Bamboo (Nandina domestica)
- Dwarf Indian Hawthorn (Rhaphiolepis indica “Ballerina”)
- Evergreen Current (Ribes vilumfolium)
- Prostrate Rosemary (Rosmarinus officinalis spp.) deep blue varieties
- Star Jasmine (Trachelospermum jasminoides)
- Compact Laurustinus (Viburnum tinus “Spring Bouquet”)
- Dwarf Periwinkle (Vinca minor) shade only
- Assorted Ornamental Grasses (Miscanthus sinensis, Muhlenbergia rigens, Pennisetum spp.)
- Turf (Turf-Type Tall Fescue blends)
Attachment 25

Folsom Corporate Center Apartments Booklet
(Separate Bound Document)