

Fact-Finding Trip Overview

Roundabouts

Folsom, CA **81,000** Population **30** 105

Signals

E

1

1

Carmel

- **16.5** Miles
 - 8 Controlled
 - Signalized
 Intersections

Folsom

- 7 Miles
- 8 Controlled Intersection
- 3 Signalized Intersections
- 5 AWSC Intersection

Roundabout Acceptance

Known roundabouts in the United States

Note: Data is current through Nov. 23 and includes true modern roundabouts, not pretenders such as rotaries or traffic-calming circles; the apparent slowing growth rate in recent years probably just reflects the lag between when roundabouts are built and when they're added to the database.

Source: Lee Rodegerdts of Kittelson & Associates

DEPARTMENT OF DATA / THE WASHINGTON POST

Roundabouts by year

1993

Source: Lee Rodegerdts of Kittelson & Associates

DEPARTMENT OF DATA / THE WASHINGTON POST

Traffic Control

Yield at Entry

Traffic Deflection

 Pavement markings and raised islands direct traffic into a one-way counterclockwise flow

Geometrics

 The radius of the circular road and the angles of entry are designed to slow the speed of vehicles

Source: FHWA

Emission Reduction: Effect of Speed on GHG

20 mph 15 mph

Figure 5.9. Driver focus at different speeds (Source: TGM 1999)

Pedestrian Safety

	Roundabout	Traffic Signals
Vehicle and Driver Safety	Eliminates high-speed crashes and reduces fatalities and injuries by 70+%	Numerous vehicle and pedestrian conflict points on standard intersection (32 vehicle/24 pedestrian)
Pedestrian and Bicyclist Safety	Shorter one-directional crossings provide greater pedestrian focus and awareness	Vehicles are more focused on signal changes than on pedestrian movements
Space/Development Footprint	Reduces additional right-of-way between links of intersections	May require additional turn lanes in future if traffic volumes or traffic patterns change
Cost and Sustainability	Less expensive than a signal for greenfield construction (new location)	Increase in fuel consumption and emissions due to stopped and delayed vehicles during red lights
Traffic Capacity	Creates equal priority for all approaches	Typically prioritizes mainline traffic allowing progression of high volumes approaches
Access Management	Provides equal priority of driveway/business access	Requires drivers to make additional left turns or right turns to access certain properties/businesses
Aesthetics	Provides attractive entries and gateways to communities	Various lighting and signing distractions can impact the overall aesthetic appeal for the user
Maintenance	Pavement markings, lighting, and some landscape maintenance may be more intensive than signals	Requires staff time required to maintain signals, provide retiming, and conduct repair

What Performance Measures are Considered?

- 1. Safety
- 2. Delay (travel time reduction savings)
- 3. Emission reductions (not used in some states)
- 4. Operations and maintenance
- 5. Initial capital cost

Benefit Performance Measures

calculate the benefits of an alternative compared to the existing condition

Cost Performance Measures

calculate the added costs of an alternative compared to the existing condition

> Potential Funding Sources

Benefit	Potential Funding Sources	
Cost (greenfield only)	Folsom Plan Area developer fees	
Safety	HSIP, SS4A	
Sustainability/Air Quality	CMAQ, Sustainable Communities grants	
Bike/Ped	ATP (State or Regional)	
Place-making	Community Design/CDBG	

Future Traffic Control Locations Creek Dr Randall Dr Scholar Wa

> Potential Roundabout Candidates

> Potential Roundabout Candidates

- Do you need any more information about roundabouts (RABs)?
- Shall staff develop a formal policy to prioritize RABs over other traffic control methods?

Thank you!