Fact-Finding Trip Overview

- **Folsom**, CA
 - **Denver**, CO
 - Central Park
 - Golden
 - Loveland
 - **Indianapolis**, IN
 - Carmel
 - Whitestown
Carmel
- 16.5 Miles
- 48 Controlled Intersections
- 2 Signalized Intersections

Folsom
- 17 Miles
- 58 Controlled Intersection
- 53 Signalized Intersections
- 5 AWSC Intersections
Roundabout Acceptance

Known roundabouts in the United States

Note: Data is current through Nov. 23 and includes true modern roundabouts, not pretenders such as rotaries or traffic-calming circles; the apparent slowing growth rate in recent years probably just reflects the lag between when roundabouts are built and when they’re added to the database.

Source: Lee Rodegerds & Kittelson & Associates

Roundabouts by year

Source: Lee Rodegerds of Kittelson & Associates

DEPARTMENT OF DATA / THE WASHINGTON POST
The Basics

Traffic Control
- Yield at Entry

Traffic Deflection
- Pavement markings and raised islands direct traffic into a one-way counterclockwise flow

Geometrics
- The radius of the circular road and the angles of entry are designed to slow the speed of vehicles
The Basics

Typical 4-leg intersection
- Angle
- Left turn

Roundabout
- Sideswipe

Source: FHWA
Emission Reduction: Effect of Speed on GHG

Source: AASHTO Transportation and Climate Change Resource Center
Figure 5.9. Driver focus at different speeds (Source: TGM 1999)
Pedestrian Safety

If hit by a person driving at:

- **20 MPH**
 - Person Survives the Collision: 90%
 - Results in a Fatality: 10%

- **30 MPH**
 - Person Survives the Collision: 60%
 - Results in a Fatality: 40%

- **40 MPH**
 - Person Survives the Collision: 20%
 - Results in a Fatality: 80%
Benefits

<table>
<thead>
<tr>
<th></th>
<th>Roundabout</th>
<th>Traffic Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle and Driver Safety</td>
<td>Eliminates high-speed crashes and reduces fatalities and injuries by 70+%</td>
<td>Numerous vehicle and pedestrian conflict points on standard intersection (32 vehicle/24 pedestrian)</td>
</tr>
<tr>
<td>Pedestrian and Bicyclist Safety</td>
<td>Shorter one-directional crossings provide greater pedestrian focus and awareness</td>
<td>Vehicles are more focused on signal changes than on pedestrian movements</td>
</tr>
<tr>
<td>Space/Development Footprint</td>
<td>Reduces additional right-of-way between links of intersections</td>
<td>May require additional turn lanes in future if traffic volumes or traffic patterns change</td>
</tr>
<tr>
<td>Cost and Sustainability</td>
<td>Less expensive than a signal for greenfield construction (new location)</td>
<td>Increase in fuel consumption and emissions due to stopped and delayed vehicles during red lights</td>
</tr>
<tr>
<td>Traffic Capacity</td>
<td>Creates equal priority for all approaches</td>
<td>Typically prioritizes mainline traffic allowing progression of high volumes approaches</td>
</tr>
<tr>
<td>Access Management</td>
<td>Provides equal priority of driveway/business access</td>
<td>Requires drivers to make additional left turns or right turns to access certain properties/businesses</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>Provides attractive entries and gateways to communities</td>
<td>Various lighting and signing distractions can impact the overall aesthetic appeal for the user</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Pavement markings, lighting, and some landscape maintenance may be more intensive than signals</td>
<td>Requires staff time required to maintain signals, provide retiming, and conduct repair</td>
</tr>
</tbody>
</table>
What Performance Measures are Considered?

1. Safety
2. Delay (travel time reduction savings)
3. Emission reductions (not used in some states)
4. Operations and maintenance
5. Initial capital cost

Benefit Performance Measures
calculate the benefits of an alternative compared to the existing condition

Cost Performance Measures
calculate the added costs of an alternative compared to the existing condition
Lifecycle Costs
Benefits

2.4 TIMES LESS likely to have an injury accident

57% REDUCTION in traffic delays

53% REDUCTION in O&M cost compared to a traffic signal
Potential Funding Sources

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Potential Funding Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (greenfield only)</td>
<td>Folsom Plan Area developer fees</td>
</tr>
<tr>
<td>Safety</td>
<td>HSIP, SS4A</td>
</tr>
<tr>
<td>Sustainability/Air Quality</td>
<td>CMAQ, Sustainable Communities grants</td>
</tr>
<tr>
<td>Bike/Ped</td>
<td>ATP (State or Regional)</td>
</tr>
<tr>
<td>Place-making</td>
<td>Community Design/CDBG</td>
</tr>
</tbody>
</table>
Existing Traffic Signals

LEGEND:
- Existing Signal (15)
- Existing Signal with Proposed Modifications
- Video Detection (16)
- Controller Upgrade/ATSPM (70)
- CCTV (47)
- Advanced TSP (8)
- Future Signal (15) [not part of this project]
Potential Roundabout Candidates
Potential Roundabout Candidates
Do you need any more information about roundabouts (RABs)?

Shall staff develop a formal policy to prioritize RABs over other traffic control methods?

Thank you!