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1. INTRODUCTION

The Alder Creek basin is located on the eastern margin of the Sacramento Valley just
south of Folsom, California (Figure 1.1). Alder Creek drains 11 square miles from the
base of the Sierra Nevada foothills to the American River at Lake Natoma. A relatively
small portion of the watershed, the area north of Highway 50, has been developed or is
still undergoing development within the City of Folsom. The majority of the watershed is
presently undeveloped but is expected to build out over the next 10 to 20 years, much of
it within the City of Folsom Sphere of Influence (SOI; see Figure 1.1), and the remainder
in unincorporated Sacramento County. Development in the SOI is described in the City
of Folsom SOI Conceptual Land Use Plan (City of Folsom, 2007) whereas the area west
of Prairie City Road will be developed as part of the Easton Project (County of
Sacramento, 2008).

The City of Folsom applied for and was awarded a CALFED grant in 2007 to conduct a
watershed assessment of Alder Creek and examine the effects of the proposed build out
on water quality, river geomorphology, and riparian and aquatic ecology. The grant is
administered by the California State Department of Water Resources.

This report contains the stream geomorphology, water quality (sediment), and hydrology
components of the watershed assessment conducted by Northwest Hydraulic Consultants
(nhc) for EDAW, Inc. EDAW is responsible for the biologic and ecologic components of
the watershed assessment as well as project management, environmental permitting and
stakeholder coordination. The results of the watershed assessment are intended for use by
the City of Folsom as a long-term guidance document to set conditions on future
development and to develop meaningful projects that preserve and enhance natural
resource value and function of the Alder Creek stream network and riparian corridor.

The goals of nhc’s component of the watershed assessment are to:

1. Develop baseline information on the physical characteristics of the Alder Creek
watershed, specifically geologic, geomorphic, hydrologic, and hydraulic
conditions in the stream network.

2. Identify the geomorphic history of the watershed; include significant events that
have affected stream system evolution and identify how the system changed as a
result.

3. Assess existing channel stability and hydraulic characteristics in the stream
network and evaluate the impacts of projected future changes in basin hydrology
and land use on stream geomorphology.

4. Provide specific recommendations for design and development in the watershed
that address channel stability, habitat and water quality concerns.
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This report is divided into three main parts, i) Alder Creek Watershed, ii)
Hydromodification Analysis, and iii) Watershed Management Recommendations. Part
one addresses objectives one and two whereas parts two and three address objectives
three and four, respectively. A summary and conclusions is provided in part four of this
report.

2. ALDER CREEK WATERSHED

The following sections describe the topography, geology, soils, geomorphology, and
disturbance history of the Alder Creek watershed. These watershed characteristics
provide an important background for understanding existing geomorphic conditions in
the Alder Creek stream network.

2.1 TOPOGRAPHY

Located on the margin between the Sacramento Valley and Sierra Nevada Mountains, the
Alder Creek basin is characterized by undulating topography that becomes increasingly
more hilly with distance upslope (Figure 2.1). The majority of the watershed lies below
500 ft elevation with the eastern edge rising rapidly into the foothills just east of
Placerville Road. Mt. Carpenter is the highest point in the watershed at 828 ft and the
lowest point is at Lake Natoma, a small afterbay for Folsom Dam at approximately 125 ft
elevation.

For this study, the Alder Creek basin was divided eight subwatersheds based on the
location of tributary inflows to Alder Creek (Figure 2.2). General characteristics of each
subwatershed are summarized in Table 2.1.

Table 2.1 Alder Creek Stream Network Characteristics by Subwatershed

Subwatershed | Area (mi’) | Elevation (ft) Relief Stream Average
Min | Max (ft) Length (mi) Stream Slope
ALDER-1 1.82 125 312 187 2.55 0.015
ALDER-2 1.69 243 410 167 3.43 0.016
ALDER-3 0.80 322 528 206 2.35 0.009
TRIB-1 0.64 243 367 124 1.44 0.014
TRIB-2 1.74 294 828 534 3.32 0.023
TRIB-3 2.23 294 811 517 6.81 0.029
BROAD-1 0.56 252 375 123 0.88 0.020
BROAD-2 1.48 259 702 443 2.15 0.015
Total Watershed 11.0 125 828 703 22.7 0.019

Topographic data shown in Table 2.1 were developed from USGS 10 m DEM data in
GIS (USGS, 2001). The Alder Creek stream network was digitized from 2005 air
photographs (USDA, 2005) and updated by comparison with recent (2008) aerial
photography on Google Earth. Most updates were made to account for recent
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construction activities north of Highway 50. Note that a gap in the stream network in
subwatershed TRIB-2 is the result of an underground storm drain (see Figure 1.1).

2.2 LAND USE

Land use in the watershed can be divided into three distinct areas by Highway 50 and
Prairie City Road (Figure 2.3). The area north of Highway 50 has been almost completely
developed by the City of Folsom for residential and light commercial land uses. Runoff
generated from this area passes through a series of detention ponds designed to reduce
peak flows to pre-developed rates as required by the City of Folsom. In contrast, the area
south of Highway 50 is almost entirely undeveloped. Dredge tailings from historic gold
mining dominate much of the basin west of Prairie City Road whereas oak woodland and
open grassland used predominantly for grazing occupy land to the east. Near surface
bedrock in the middle and upper watershed promotes a high water table and various types
of wetland habitat including vernal pools, seasonal wetlands and emergent marshes
(County of Sacramento, 2008). Oak woodland is found predominantly along Alder Creek
and increases with distance downstream, particularly downstream of Prairie City Road.

2.3 GEOLOGY

Figure 2.4 shows the geology of the Alder Creek basin. The Copper Hill and Gopher
Ridge Volcanics underlie much of the middle and upper watershed and are composed of
metamorphosed mafic to felsic pyroclastic rocks with some pillow lava and minor felsic
porphyrite (Wagner et al., 1987). Volcanic activity in the region occurred about 200
million years ago during the Nevada Orogeny, a period of mountain building which
formed the ancestral Sierra Nevada Range, a range much lower than that observed today.
The Salt Springs Slate was also formed during this period as a result of tectonic
metamorphism. Over time, these rocks were metamorphosed again through a series of
compressive faulting events along the Sierra Nevada Range which continued through the
middle and late Tertiary Period (about 30 million to 5 million years ago) and produced
the northwest-southeast trending rock alignment observed today (Norris and Webb,
1990).

The lower part of the watershed, downstream of Prairie City Road, is covered almost
entirely by dredge tailings consisting of reworked alluvial deposits bordering the
American River. Extensive areas along the American River were mined for placer
deposits from 1849 until the 1960s (Clark, 2005). Dredge tailings grade east along Alder
Creek into consolidated gravel, sand and silt of the Laguna Formation as well as the Ione
Formation, composed of quartzose sandstone interbedded with kaolinitic clay in the
vicinity of Prairie City Road. Both these rock units are composed of consolidated
sedimentary deposits eroded from the Sierra Nevada Range during the Tertiary Period
(66 million to 2 million years ago).

The Alder Creek basin lies just west of the Foothills Fault System, a series of faults
located along the eastern Sacramento Valley margin at the base of the Sierra Nevada
Mountains (Jennings, 1994). Although the fault system is very extensive and exhibits
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numerous large fault zones, there is no evidence of fault displacement or earthquake
activity during the Quaternary Period (the last 1.6 million years; Jennings, 1994).

2.4 SolILS

Alder Creek soils are shown in Figure 2.5 and can be divided into four main soil series,
namely: Auburn, Argonaut, Whiterock, and Xerorthents, the latter consisting of mine and
dredge tailing deposits (NRCS, 2007). Xerorthents occupy much of the western part of
Alder Creek from Prairie City Road to Lake Natoma and are primarily composed of loose
sand, gravel, and cobbles. Auburn, Argonaut, and Whiterock soil series dominate the
middle and eastern parts of the watershed. These soils form a thin mantle over the
underlying bedrock and rock outcrops are common. Auburn soils are characterized by
silty loam ranging from 10 to 28 inch depths. Argonaut series soils are coarser, consisting
of gravelly loam and also deeper, ranging from 20 to 40 inches thick. In contrast,
Whiterock series soils are loamy and very thin, extending between 4 and 14 inches to
near surface bedrock. The National Resource Conservation Service (NRCS) classifies
each of these soil series as well to excessively drained.

2.5 GEOMORPHOLOGY

This section documents existing geomorphic conditions in the Alder Creek stream
network. The discussion is based on background information collected for this study and
a two day field inspection of 15 stream sites conducted in February 2008 (Figure 2.6).
The results of the field inspection are provided first, followed by a discussion of existing
conditions in each subwatershed.

2.5.1 Field Inspection

Field observations, ground photos, cross-section and long profile surveys, and bed
material counts were obtained at each field inspection site. These data were collected for
the geomorphic assessment as well as the hydromodification analysis discussed later in
this report. Cross-sections, long profiles and bed material gradations for Alder Creek sites
downstream of Prairie City Road were obtained from existing information collected by E-
Corp (Bill Christner, pers. comm.). Cross-section surveys were collected for nhc by
Mackay & Somps in the middle watershed (Sites 5, 6, 7, 8 and 9) and developed from
existing 1 ft and 2 ft contour topography of the SOI and lower Alder Creek for Sites 3,
11, 12, 13 and 14 (Mackay & Somps, 2005, 2006). Ground photographs, survey data and
bed material count information is provided in Appendix 1.

Table 2.2 summarizes channel characteristics at each field inspection site. Channel width
and depth are of the bankfull channel, estimated from cross-section surveys by a break in
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slope at the top of the stream bank and by changes in vegetation cover (Williams, 1978).
Stream types in Table 2.2 refer to large-scale bedforms on the channel bed, namely pool-
riffle or plane-bed. Pool-riffle morphology is characterized by alternating areas of
shallow, rapid flow over coarser bed material followed by deeper pools with more
gradual flow and finer-grained bed material. Plane- bed streams exhibit no large-scale
bedforms, are relatively flat along the stream bed, and have more uniform bed material
characteristics. Other channel characteristics in Table 2.2 are discussed in the next
section.

2.5.2 Existing Conditions

This section describes geomorphic conditions in the Alder Creek stream network for each
of the eight subwatersheds in the basin (see Figure 2.6).

ALDER-1

The ALDER-1 subwatershed covers 1.8 square miles and contains the lowermost section
of Alder Creek (see Figure 2.6). This 2.6 mile reach is a relatively straight, perennially
flowing stream extending from Folsom Blvd. to Prairie City Road. Lake Natoma provides
a base level control at the downstream end of the reach and the Prairie City crossing is
bedrock controlled. A dam is located approximately 2,000 ft upstream of Folsom Blvd.
Estimated to be about 25 ft high, the dam also provides a base level control and creates a
backwater area that extends upstream approximately 1,500 ft during base flow
conditions. The reservoir behind the dam appeared to be mostly full of sediment during
the field inspection.

This reach of Alder Creek exhibits a nearly continuous riparian corridor of oak woodland
and the most riparian cover of any stream corridor in the watershed (see Figure 2.3). The
riparian area is bordered by dredge tailings which produce a hummocky and irregular
surface in many areas adjacent to the stream channel, mainly on the south side of the
creek. The south side appears as an irregular bench surface near the creek that rises
steeply into hillslopes further south, some of which appear as nearly vertical cuts due to
partial excavation by dredges. Hillslopes also border Alder Creek to the north along
Highway 50.

Field inspection sites ECORP-1, 2, 3, 4 and Stagegage revealed a narrow and confined,
stable channel with either pool-riffle or plane-bed stream morphology. All field
inspection sites were characterized by a discontinuous channel floodplain confined by
adjacent hillslopes and dredge tailings. No bed or bank erosion was observed. Channel
bed material was predominantly gravel and cobbles with some instream woody debris
and occasional bar surfaces limited in width by adjacent bank slopes.

The mouth of Alder Creek was inundated following the completion of Lake Natoma in
1955, forming Alder Creek pond (the pond). The pond is located at the downstream
terminus of Alder Creek, between Folsom Blvd. and Highway 50. Alder Creek flows into
the pond downstream of culverts beneath Folsom Blvd and to Lake Natoma through
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culverts beneath Highway 50. The pond ranges from about 5 to 10 acres in size,
depending on water surface elevations in Lake Natoma, operated by the Bureau of
Reclamation as an afterbay for Folsom Reservoir. Daily and seasonal operation of Lake
Natoma results in fluctuations in water surface elevation that affect the pond’s size and
depth. Sediment from the Alder Creek watershed is deposited on the delta of Alder
Creek, however surveys indicating the rate of growth or sedimentary characteristics of
the delta or deposition within the pond are not available.

The twin box culverts (10°x10’ barrels) underneath Folsom Boulevard do not appear to
be affected by sediment deposition; however minor blockage by debris during high flow
events may occur. Field inspections completed on this portion of the creek indicate no
evidence of any significant scour or deposition of sediment in the vicinity of the culvert.
Bed invert elevations are controlled by large boulders placed on the channel invert
immediately downstream of Folsom Boulevard, and relatively immobile gravel and
cobble riffles are noted in the channel both immediately upstream and downstream of
Folsom Boulevard.

Circulation within the pond is limited, especially during low flow periods of Alder Creek.
The twin box culverts (~10°x10’ as scaled from Caltrans “as built” plans) underneath
Highway 50 limit wind or current driven circulation from Lake Natoma into the pond as
well. Extended periods of time of low flow from Alder Creek itself also leads to limited
through flow circulation within this impounded embayment of Lake Natoma, resulting in
impaired water quality of the pond.

TRIB-1

The TRIB-1 subwatershed covers 0.64 square miles and contains a small tributary to
Alder creek. Land cover consists of oak woodland in the lower watershed and along the
stream channel from the tributary mouth to Aerojet Road. Grassland and commercial land
use on Aerojet property cover the remainder of this subbasin upstream of Aerojet Road.

The stream channel at Site 3, near the confluence with Alder Creek (see Figure 2.6),
appears as a fairly straight, small ditch (see Appendix 1 — Field Photos). The stream bed
is about 2 feet wide and appears stable with no bed or bank erosion. The stream flows
into a settling pond just downstream of this site that empties through a culvert into Alder
Creek.

ALDER-2

The ALDER-2 subwatershed is 1.69 square miles in size and contains 3.43 miles of
stream, 2.6 miles of which is Alder Creek. Four tributaries flow into Alder Creek in this
subwatershed. Two major tributaries (BROAD-1 and BROAD-2) drain into the creek
from developed areas in the City of Folsom north of Highway 50 whereas two small
streams drain north into Alder Creek from stock ponds (see Figure 2.6). Oak woodland
persists along Alder Creek in ALDER-2 although it is much less dense than downstream
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of Prairie City Road. The remainder of the watershed land cover is grassland, mostly used
for grazing, with some commercial land use in a small area north of Highway 50.

Topography in the ALDER-2 subwatershed is characterized by hilly, rocky terrain with
much of the creek bordered by steep hillslopes (Mackay & Somps, 2006). Consequently,
the floodplain surface is typically narrow or absent, particularly upstream of the
BROAD-2 confluence where hillslopes increasingly confine the stream channel.
Whiterock loam, the predominant soil type in ALDER-2 (See Figure 2.5), is very shallow
and provides only a thin cover over underlying bedrock, usually a foot or less. Field
inspection sites 5 and 9 both exhibit wide, shallow channel cross-sections due to bedrock
control on the stream bed at both sites. No bed or bank erosion was observed at either site
and pool-riffle bed morphology is largely influenced by bedrock controls along the
stream bed at both locations.

Undeveloped Upper Watershed

The undeveloped upper watershed consists of subwatersheds ALDER-3, TRIB-3, and
TRIB-2 south of Highway 50. This area occupies four square miles, about one third of
the watershed, and contains 11.8 miles of stream channels. These streams consist of
small, ephemeral drainages that convey runoff during the wetter months and run dry in
summer. The undeveloped upper watershed is characterized almost entirely by rocky,
undulating topography covered with grasslands and used for cattle grazing. No riparian
cover is present along stream channels. Channel pattern is largely influenced by near-
surface bedrock controls on the stream bed and banks.

Field inspection site 11, 12, 13, and 14 are located in the undeveloped upper watershed
(see Figure 2.6). Due to property access restrictions, only Site 11 was visited on foot
whereas Sites 12, 13, and 14 were viewed from the road. Stream channels at all
inspection sites appeared stable with minor, localized bank erosion in some areas.
Bedrock control along the bed and banks was prominent along the stream at Site 11 as
were frequent bedrock outcrops and thin soil cover in the surrounding landscape.

Developed Upper Watershed

The developed upper watershed consists of the Broadstone area in the City of Folsom
(BROAD-1 and BROAD-2) and ongoing development to the east in subwatershed TRIB-
2 north of Highway 50 (see Figure 2.6). This area covers 2.8 square miles and contains
3.8 miles of stream channel that generally flow in narrow ‘greenbelt’ corridors within the
developed area. Several water retention basins appear in the BROAD-1 and BROAD-2
subwatersheds. Aerial photos show the stream segment north of Highway 50 in
subwatershed TRIB-2 entering a storm drain at Cavitt Drive. It appears to be routed
underground for some distance before emerging south of Highway 50 although this was
not verified in the field. Streams in the developed upper watershed were not visited
during the field inspection, except at Site 8 just north of Highway 50 (see Figure 2.6).
Similar to upland areas south of Highway 50, Site 8 exhibited bedrock control on the
stream bed with no indications of bed or bank erosion or channel instability. Field
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inspection sites 6 and 7 are located at the mouth of subwatersheds BROAD-1 and
BROAD-2, respectively. Both sites are located south of Highway 50 and exhibit stable
channels with significant bedrock control.

2.6 HisTORICAL GEOMORPHOLOGY

Alder Creek and its surrounding watershed have been altered by historical activities that
include extensive placer mining, flood control operations, water diversions, and urban
development. These activities and their impact on the evolution of the Alder Creek
stream network, and particularly lower Alder Creek, are documented in this section. The
Folsom History Museum (2008) and a history of gold districts in California by Clark
(2005) were the main sources of historical information used for this section.

2.6.1 Significant Events

Significant changes in the Alder Creek watershed began with the gold rush in 1849, a
time when the population exploded with thousands of men arriving in the region. Mining
camps rapidly appeared along the American River and displaced the local Maidu villages.
New communities included Folsom, Mormon Bar, and Prairie City. Prairie City was
located partly in the Alder Creek watershed, near the present day intersection of Prairie
City Road and Highway 50. Mining on Alder Creek was concentrated on the lower mile
or so of the creek during the early years of the gold rush, in addition to mining camps
extending southwest along the American River. In its heyday in 1854, Prairie City
numbered over 1000 with stores, hotels and a school, but bust followed boom and by the
1880s the town was virtually abandoned. The town of Folsom was laid out in 1855 as the
first stop on the Sacramento Valley Railroad heading east from Sacramento and was
completed in 1856. Folsom became an important center of trade and commerce between
San Francisco and gold mining camps in the foothills and also became the western
terminus of the Pony Express in 1860. Mining claims continued to be worked in the
region through the 1890s, mainly by Chinese immigrants in later years.

The Natoma Water and Mining Company, later the Natomas Company, played a major
role in the region’s history. Formed in 1851, the Natomas Company began water
deliveries to the area around Prairie City starting in 1853. Water was delivered for miners
who staked claims along the Natomas Company canal which carried water 20 miles from
the south fork of the American River above Salmon Falls to Prairie City. The ditch
reached Folsom in 1854. Additional ditches were added, some passing through the Alder
Creek watershed, and their remnants can still be seen today. Examination of 1941 era
historical topographic maps shows two ditches passing from north to south through the
Alder Creek watershed (USGS, 1944). The first extends south from Willow Springs
reservoir, which still exists today, and the second is located further east in the upper part
of watershed.

The second phase of gold mining operations in the region began with the start of
dredging operations in 1894, although dredging did not become a major industry until a
few years later when bucket line dredging was perfected. Gold was the main product of
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dredging but other precious metals were extracted in smaller amounts (Clark, 2005). By
1900 the Natomas Company became the principal dredging operator in the district and,
excluding a brief stoppage during World War 2, conducted operations until 1962 when
the last active dredge was shut down. This marked the end of dredging operations in what
is now called the Folsom Gold District (Clark, 2005), one of the largest gold districts in
California. Approximately one billion cubic yards of gravel was dredged in this district,
extending over ten miles from Folsom to Fair Oaks, and located primarily on the south
bank of the American River.

The progressive history of dredging operations on lower Alder creek can be observed
through comparison of 1937 aerial photos (Figure 2.7) with current photos (Figure 2.3).
Ongoing expansion of dredging activity toward the east along lower Alder Creek can be
observed between the two years. 1937 aerial photos also show significantly less
vegetation cover along lower Alder Creek than observed today (Figure 2.3). This may be
the result of a historical rise in the ground water table and consequent increase in
vegetation cover caused by dredging operations on lower Alder Creek which lowered
land elevations and construction of the Natoma Company dam which artificially raised
the water table.

Dam construction on the American River and Alder Creek begins with the opening of
Folsom Prison in 1880. The prison provided a cheap labor force for construction of the
first dam at Folsom, completed in 1893 on the American River. By 1895 the powerhouse
provided long distance transmission of electric power using alternating current, a rarity
for the day. The dam was owned by the Natomas Company. A second dam was built on
Alder Creek, presumably by the Natomas Company, but no specific mention is made of it
in the literature reviewed for this report. The dam appears to have been constructed
sometime between 1908 and 1937, the time period between which it appears on historical
maps and aerial photos.

Work began on the contemporary Folsom Dam in 1952 and was completed in 1956.
Nimbus dam and Lake Natoma were completed in 1955. The mouth of Alder Creek was
inundated with the creation of Lake Natoma, operated as an afterbay for Folsom
Reservoir by the U.S. Bureau of Reclamation. Aerojet established its Rancho Cordova
facility on 13,500 acres in 1953, including much of the lower Alder Creek watershed.
Highway 50 was constructed in the 1960s and development of the Alder Creek watershed
north of Highway 50 began in the late 1990s and continues today.

2.6.2 Historical Channel Planform and Profile

Historical Channel Planform Shift

Historical maps of lower Alder Creek were available from 1893, 1908, 1937, 1952, 1967,
and 1980. Orthorectified aerial photos were available from 2006. Figure 2.8 shows a
historical planform shift map of lower Alder Creek from 1908 to 2006 from which three
significant observations can be made. First, channel alignment downstream of the dam
remains relatively unchanged from 1937 on, likely due to channel entrenchment by
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sediment hungry flows following dam construction. Second, the 1908 and 1937 channel
planform shows two large meanders in the middle section of lower Alder Creek,
meanders that are absent in later years. Given the close proximity of these meanders to
Highway 50 it seems possible that the creek alignment was shifted south as part of
highway construction. Lastly, examination of Figure 2.8 shows significantly greater
variability in channel planform from 1908 to 1952 than from 1952 to 2006, indicating
relative channel stability during the latter period. Dredging operations on lower Alder
Creek prior to 1962 may have caused the greater channel planform variability observed
during this era.

Historical Invert Profiles

Limited data were available regarding historical stream profiles of lower Alder Creek
(Figure 2.9). 1908 and 1952 profiles in Figure 2.9 are from USGS topographic maps
whereas 2005 data show base flow water surface elevations from 1 foot contour
topography (Mackay & Somps, 2005). Examination of Figure 2.9 shows the abrupt
change in stream profile caused by construction of the dam on Alder Creek. Downstream
of the dam, Alder Creek shows stream incision from 1908 to 2005. This is expected given
sediment trapping in the dam reservoir and subsequent erosion downstream of the dam.
In contrast, Alder Creek upstream of the dam shows about 4 ft of stream aggradation
from 1908 to 1952 with subsequent degradation back to 1908 levels by 2005. The cause
is unclear but may be due to abundant sediment supply produced by dredging operations
upstream of this area sometime between 1937 and 1962.

Alder Creek Watershed Assessment 13 nhc
River Geomorphology and Hydrology Component December 2009



3. HYDROMODIFICATION ANALYSIS

3.1 APPROACH

A hydromodification analysis was used in this study to identify the potential for future
urbanization and consequent changes in basin hydrology to cause channel instability in
the Alder Creek stream network. Eight geomorphic index points representative of varying
conditions and geomorphic environments in the stream network were selected for the
hydromodification analysis (Figure 3.1). Hydrologic and hydraulic information was
developed at each geomorphic index point and used to compute a shear stress index for
existing and proposed hydrologic conditions. The index provides a scientifically based
method to measure the likelihood of channel instability following changes in hydrologic
regime, based on a shear stress index ratio developed from existing and proposed
indexes. The shear stress index used in this study is based on average shear stress
computations for a full range of flows at each index point. Detailed information regarding
the development of hydrologic, hydraulic, and shear stress index values is provided
below, followed by the results of the hydromodification analysis.

3.2 HYDROLOGY

This section documents the development of flow duration curves at geomorphic index
points in the Alder Creek watershed (see Figure 3.1) for existing and proposed
conditions, used later in the shear stress index calculations. No measured flow or
precipitation data are available for the Alder Creek watershed nor have any continuous
simulation models been developed from onsite or regional analyses. Consequently, flow
duration curves were developed from alternate sources. The low flow component of the
flow duration curve was developed from mean monthly flow records of 18 watersheds in
northern California similar to Alder Creek whereas the high flow component of the flow
duration curve was obtained from an event-based hydrologic model developed for the
SOI area by Domenichelli & Associates (2007). Flow duration curves were developed for
existing and proposed conditions at Prairie City Road, the downstream limit of the SOI.
These curves were then scaled by basin area for use at each of the eight geomorphic
index points. Details regarding the datasets and their development into flow duration
curves at Prairie City Road are discussed below.

3.2.1 Low Flow Analysis

Mean monthly flow data from 18 gaged watersheds similar to Alder creek were used to
develop the low flow component of existing and proposed condition flow duration curves
at Prairie City Road. The 18 watersheds were selected based on the availability of USGS
gage data, their location in Northern California and similar basin area and topographic
characteristics to Alder Creek. Mean monthly flow data were normalized based on the
ratio of mean annual precipitation in Alder Creek to each of the 18 watersheds and
plotted against basin area for each month of the year. Mean monthly flow estimates at
Prairie City Road were obtained from ordinary least-squares regression lines drawn
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through each of the twelve monthly datasets. Mean monthly flow data were assumed to
represent existing conditions. Proposed condition mean monthly flows were obtained by
multiplying the existing conditions dataset by 1.1, the difference between existing and
proposed condition low flows from a hydromodification study conducted in the nearby
Laguna Creek watershed (Geosyntec, 2007).

Mean monthly flow data were ranked and assigned a percent time of exceedance based
on a one year time scale such that the lowest mean monthly flow was exceeded 100% of
the time and the highest mean monthly flow exceeded 8% of the time (one month divided
by one year). These are approximate estimates but are considered reasonable in the
absence of flow data for Alder Creek. Results of the low flow analysis are summarized in
Table 3.1.

Table 3.1 Low Flow Analysis Results for Prairie City Road

Percent Time Existing Conditions flow | Proposed Conditions flow
Exceedance (cfs) (cfs)
100% 0.12 0.13
92% 0.14 0.16
83% 0.30 0.33
75% 0.39 0.43
67% 0.73 0.80
58% 1.11 1.22
50% 1.75 1.91
42% 4.40 4.84
33% 4.48 4.93
25% 10.39 11.43
17% 11.05 12.15
8% 16.55 18.21

3.2.2 High Flow Analysis

The results of an event-based hydrologic model of the Folsom SOI by Domenichelli &
Associates (2007) were used to develop the high flow component of existing and
proposed condition flow duration curves at Prairie City Road. No extensive QA/QC
review or detailed evaluation of the hydrologic model setup was conducted by nhc and
the model results were used as is.

Flood hydrographs of design storms and peak flow data for the 2-yr, 5-yr, 10-yr, and 100-
yr events at Prairie City Road formed the basis of the high flow analysis. Flood
hydrographs were provided to nhc by Domenichelli & Associates for the 2-yr and 10-
year existing condition 24-hr (hour) design storms and the 100-year proposed condition
24-hr design storm. These flood hydrographs were scaled using available peak flow data
to develop a suite of 100-yr, 10-yr, 5-yr, and 2-yr 24-hour design storm flood
hydrographs for both existing and proposed conditions.

Average flows were calculated from each design storm hydrograph for selected 1-hr
through 24-hr time windows around the event peak (Figures 3.2 and 3.3). Flow duration
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curve information was developed by assigning a duration to each of the 1-hr through 24-
hr average flows for the 2-yr, 5-yr, 10-yr, and 100-yr design storm events by computing
the expected value of percent time each flow would occur over the 100 year range of
design flows. For example, the expected value of the 100-year, 1-hr design storm occurs
over 1-hr in a 100 year period. The 2-year, 1-hr flow occurs more frequently, once every
two years or 50 hours every 100 years.

3.2.3 Flow Duration Curves

Flow duration data from the low flow and high flow analyses can be expressed in hours
over a 100-year time interval as shown in Table 3.2 and plotted in Figure 3.4.

Table 3.2 Prairie City Road Flow Duration Analysis Results

Exceedance duration (hr) Flow existing (cfs) Flow prop. (cfs)
876000 0.12 0.13
803000 0.14 0.16
730000 0.30 0.33
657000 0.39 0.43
584000 0.73 0.80
511000 1.11 1.22
438000 1.73 1.91
365000 4.40 4.84
292000 4.48 4.93
219000 10.39 11.43
146000 11.05 12.15
73000 16.55 18.21

1200 236.5 324.6
1000 276.6 373.4
800 330.1 432.9
400 556.2 650.9
200 834.8 900.3
160 863.4 978.0
80 1287.9 1352.7
40 1677.4 1670.4
30 1785.7 1790.0
20 1969.8 2017.8
15 2134.1 2162.4
10 2308.6 2346.6
5 2478.2 2492.0
2519.7 2495.1

2 3300.3 3080.9
15 3575.6 3301.7
1 3867.9 3583.0

Note that Table 3.2 shows a jump in exceedance duration from 1,200 to 73,000 hours.
This occurs at the break between available low flow and high flow datasets.
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Flow duration curves for geomorphic index points (see Figure 3.1) were calculated by
scaling the flow duration curves at Prairie City Road based on the ratio of contributing
basin areas (Table 3.3).

Table 3.3 Geomorphic Index Point Basin Areas

Index Point | Stagegage | ECORP-2 | Pilot | 5 | 6 | 7 | 9 | 11 | 14
Basin Area ‘ 9.8 ‘ 92 ‘ 8.7 ‘ 82 ‘ 0.5 ‘ 1.4 ‘ 55 ‘ 0.4 ‘ 1.1
(sq mi)

Table 3.4 summarizes existing and proposed condition flow durations for each index

point.
Table 3.4 Existing and Proposed Condition Flow Durations at Index Points
Prairie City Road ECORP-2 Stage-gage
Exceedance Flow existing Flow prop. | Flow existing | Flow prop. | Flow existing Flow prop.
duration (hr) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)
876000 0.12 0.13 0.13 0.14 0.13 0.15
803000 0.14 0.16 0.15 0.17 0.16 0.18
730000 0.30 0.33 0.32 0.35 0.34 0.37
657000 0.39 0.43 0.42 0.46 0.44 0.49
584000 0.73 0.80 0.77 0.84 0.82 0.90
511000 1.11 1.22 1.18 1.29 1.25 1.38
438000 1.73 1.91 1.83 2.02 1.95 2.15
365000 4.40 4.84 4.66 5.12 4.96 5.46
292000 4.48 4.93 4.74 5.21 5.05 5.55
219000 10.39 11.43 10.99 12.08 11.70 12.87
146000 11.05 12.15 11.68 12.85 12.44 13.69
73000 16.55 18.21 17.50 19.25 18.64 20.51
1200 236.5 324.6 250.1 343.2 266.4 365.6
1000 276.6 373.4 292.5 394.8 311.6 420.6
800 330.1 432.9 349.0 457.7 371.8 487.6
400 556.2 650.9 588.1 688.3 626.5 733.2
200 834.8 900.3 882.7 952.1 940.3 1014.1
160 863.4 978.0 913.1 1034.2 972.6 1101.6
80 1287.9 1352.7 1361.9 1430.5 1450.8 1523.8
40 1677.4 1670.4 1773.8 1766.3 1889.5 1881.5
30 1785.7 1790.0 1888.3 1892.9 2011.4 2016.4
20 1969.8 2017.8 2083.0 2133.8 2218.8 2272.9
15 2134.1 2162.4 2256.7 2286.7 2403.9 2435.8
10 2308.6 2346.6 2441.2 2481.5 2600.4 2643.3
5 2478.2 2492.0 2620.6 2635.2 2791.5 2807.1
4 2519.7 2495.1 2664.5 2638.5 2838.3 2810.5
2 3300.3 3080.9 3490.0 3258.0 3717.6 3470.5
15 3575.6 3301.7 3781.0 3491.4 4027.6 3719.1
1 3867.9 3583.0 4090.2 3788.9 4356.9 4036.0
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5 6 7
Exceedance Flow existing | Flow prop. | Flow existing | Flow prop. | Flow existing | Flow prop.

duration (hr) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)
876000 0.11 0.12 0.01 0.01 0.02 0.02
803000 0.13 0.15 0.01 0.01 0.02 0.03
730000 0.28 0.31 0.02 0.02 0.05 0.05
657000 0.37 0.41 0.02 0.02 0.06 0.07
584000 0.68 0.75 0.04 0.05 0.12 0.13
511000 1.05 1.15 0.06 0.07 0.18 0.20
438000 1.63 1.80 0.10 0.11 0.28 0.31
365000 4.15 4.56 0.25 0.28 0.71 0.78
292000 4.22 4.64 0.26 0.28 0.72 0.79
219000 9.79 10.77 0.60 0.66 1.67 1.84
146000 10.41 11.45 0.63 0.70 1.78 1.96
73000 15.60 17.16 0.95 1.05 2.66 2.93
1200 222.9 305.9 13.6 18.7 38.1 52.2
1000 260.7 351.9 15.9 215 44.5 60.1
800 311.1 408.0 19.0 24.9 53.1 69.7

400 524.2 613.5 32.0 37.4 89.5 104.7

200 786.8 848.6 48.0 51.7 134.3 144.9

160 813.8 921.8 49.6 56.2 138.9 157.4

80 1213.9 1275.0 74.0 7.7 207.3 217.7

40 1581.0 1574.4 96.4 96.0 269.9 268.8

30 1683.0 1687.2 102.6 102.9 287.3 288.1

20 1856.6 1901.8 113.2 116.0 317.0 324.7

15 2011.4 2038.1 122.6 1243 3434 348.0

10 2175.9 2211.8 132.7 134.9 3715 377.6

5 2335.8 2348.8 142.4 143.2 398.8 401.0

4 2374.9 2351.7 144.8 143.4 405.5 401.5

2 3110.6 2903.8 189.7 177.1 531.1 495.8

15 3370.1 3111.9 205.5 189.8 575.4 531.3

1 3645.6 3377.1 222.3 205.9 622.4 576.6

9 11 14
Exceedance Flow existing | Flow prop. | Flow existing | Flow prop. Flow Flow prop.
duration (hr) (cfs) (cfs) (cfs) (cfs) existing (cfs) (cfs)
876000 0.07 0.08 0.01 0.01 0.01 0.02
803000 0.09 0.10 0.01 0.01 0.02 0.02
730000 0.19 0.21 0.01 0.02 0.04 0.04
657000 0.25 0.27 0.02 0.02 0.05 0.05
584000 0.46 0.50 0.03 0.04 0.09 0.10
511000 0.70 0.77 0.05 0.06 0.14 0.15
438000 1.10 121 0.08 0.09 0.22 0.24
365000 2.78 3.06 0.20 0.22 0.56 0.61
292000 2.83 3.12 0.21 0.23 0.57 0.62
219000 6.57 7.22 0.48 0.53 131 144
146000 6.98 7.68 0.51 0.56 1.40 154
73000 10.46 11.51 0.76 0.84 2.09 2.30
1200 149.5 205.2 10.9 14.9 29.9 41.0
1000 174.9 236.0 12.7 17.2 35.0 47.2
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800 208.7 273.6 15.2 19.9 41.7 54.7
400 351.6 411.5 25.6 29.9 70.3 82.3
200 527.7 569.2 38.4 41.4 105.5 113.8
160 545.8 618.3 39.7 45.0 109.2 123.7
80 814.2 855.2 59.2 62.2 162.8 171.0
40 1060.4 1056.0 77.1 76.8 212.1 211.2
30 1128.9 1131.6 82.1 82.3 225.8 226.3
20 1245.3 1275.6 90.6 92.8 249.1 255.1
15 1349.1 1367.0 98.1 99.4 269.8 273.4
10 1459.4 1483.5 106.1 107.9 291.9 296.7
5 1566.7 1575.4 113.9 114.6 313.3 315.1

1592.9 1577.3 115.8 114.7 318.6 315.5

2 2086.4 1947.7 151.7 141.7 417.3 389.5

15 2260.4 2087.3 164.4 151.8 452.1 417.5
1 24452 2265.1 177.8 164.7 489.0 453.0

3.3 HYDRAULICS

An analysis of channel hydraulics was conducted at each of the eight geomorphic index
points (see Figure 3.1). Rating curve relationships for stage versus discharge (cfs),
average velocity (fps), and average shear stress (Ibf/ft*) were generated at each index
point for base flow through the 100-year event flow conditions. All calculations were
made using HydroCalc©, a one dimensional model for calculating hydraulic parameters
in uniform, open-channel flow conditions (Molls, 2008). The purpose of the hydraulic
analysis is to characterize hydraulic conditions at geomorphic index points for a range of
flow conditions and to develop information needed for the shear stress index calculations
in the next section.

3.3.1 Hydraulic Parameter Development

Baseline data required to perform the hydraulic calculations were channel geometry,
slope, and channel roughness. Geometry and slope data were obtained from survey and
topographic information collected for this study (see Section 2.5.1) whereas channel
roughness (Manning’s n) was estimated from field inspection observations using standard
practices. A single n-value representative of average roughness for the cross-section over
a range of flows was used for each index point. Table 3.5 summarizes the channel slope
and Manning’s n values developed for each geomorphic index point.

Table 3.5 Channel Slope and Roughness
Parameters for Geomorphic Index Points

Geomorphic Slope Manning's

Index Point ft/ft n
ECORP-2 0.009 0.045
Stagegage 0.009 0.045
Point 5 0.004 0.035
Point 6 0.009 0.045
Point 7 0.011 0.035
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Point 9 0.010 0.035
Point 11 0.002 0.035
Point 14 0.006 0.035

3.3.2 Results

Rating curves developed for the hydraulic analysis are provided in Appendix 2. The
rating curves are for discharge versus stage, normal velocity versus stage, and average
shear stress versus stage. Note that peak discharges for the 2-yr, 5-yr, 10-yr, and 100-yr
storm events are shown on each rating curve. These data were obtained from peak flows
at Prairie City Road (Domenichelli & Associates, 2007), scaled to the basin area of each
index point. Table 3.6 summarizes peak discharge values at each geomorphic index point.

Table 3.6 Peak Discharges for 2, 5, 10, and 100-year events at Geomorphic Index Points

Scaled 2-yr Scaled 5-yr Scaled 10-y Scaled 100-yr

Geomorphic Subwatershed  Peak Discharge  Peak Discharge Peak Discharge Peak Discharge
Index Point area (acres) (cfs) (cfs) (cfs) (cfs)

ECORP-2 5888 1116 1737 2161 3620
Stagegage 6272 1189 1850 2302 3856
Point 5 5248 995 1548 1926 3227
Point 6 320 61 94 117 197
Point 7 896 170 264 329 551
Point 9 3520 667 1038 1292 2164
Point 11 410 78 121 150 252
Point 14 850 161 251 312 523

Many of the index points exhibit a well defined channel cross-section with steep banks
that abruptly transitions into a wide floodplain or other significant change in bank slope,
such as index points 6, 14, and ECORP-2 (see Appendix 1 — Cross-Sections). These
cross-section characteristics significantly affect the average velocity and shear stress
rating curves, causing both to decrease when flows overtop the defined channel. This can
be observed at index points ECORP-2 and 6 (see Figure A2.28, A2.29, A2.34 and A2.35
in Appendix 2). Although the average velocity and shear stress declines with stage as
flows overtop the channel, the localized shear stress and velocity in the bankfull channel
at these sites would most likely show a steady increase with stage. In contrast, index
points 5, 7, 9, 11 and Stagegage exhibit less abrupt changes in slope from the defined
channel bank onto the floodplain. Consequently, these sections show steady increases in
average velocity and shear stress with increasing stage.

3.4 SHEAR STRESS INDEX

To assess the susceptibility of channels within the Alder Creek watershed to induced
channel instability due to changed hydrologic conditions, nhc completed a
hydromodification assessment of changes in applied and excess channel shear stress for
the full range of stream discharge, from commonly occurring low base flow conditions,
through annual and intra-annual moderate storm flow events, to extreme and rare flood
events. A “shear stress index” which is a measure of the applied channel shear for any
given discharge is computed and compared for both existing and modified hydrologic
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conditions resulting from watershed land use changes. The approach utilized herein is
similar to the approach utilized by the King County, Santa Clara Valley Water District,
Contra Costa County, and other stormwater management agencies (Hartley and Funke,
2001; Rohrer and Roesner, 2005; SCVURPPP, 2005). A similar approach was recently
completed by Geosyntec Consultants in their watershed management study of the Laguna
Creek watershed, located adjacent and to the southwest of Alder Creek, and completed in
July of 2007. The shear stress index developed for the Alder Creek watershed study and
described in the following section integrates the cumulative distribution of excess shear
stress greater than the point of incipient motion' over the entire range of hydrologic
conditions. This index is computed for several geomorphic index locations within the
watershed; specifically index points 5, 6, 7, 9, 11, 14, ECORP-2, and Stagegage (see
Figure 3.1). Data required for the analysis are the flow duration characteristics of the
watershed hydrology, hydraulic variables at each geomorphic index point, and bed
material particle size distribution data described and presented in previous sections.

3.4.1 Methodology

The shear index combines flow duration characteristics with a shear stress function to
compute the non-dimensional shear stress index as a measure of the potential for a given
flowrate to move sediment. Flow duration curves were developed and described in detail
in section 3.2 and provided in Appendix 2 for each index point. Rating curves for
discharge, velocity, and shear stress are described in detail in section 3.3 and provided in
Appendix 2 for each index point.

Shear Stress Index Development

To calculate the shear stress index S, the excess shear stress exerted on particles in the
stream is integrated over time. The solved integral shear stress function is described as
follows:

S = (To - T)t/(Ys —Yw)Dso

where

S = Shear stress index (unitless)

To = Average Shear Stress (Ibf/sq. ft)

Te = Critical Shear Stress (Ibf/sq. ft)

t = Decimal % time a discharge is greater than or equal to a given value
Vs = Specific weight of rock (165 Ibf/ft’)

Y = Specific weight of water (62.4 Ibf/ft’)

Dsp = Particle size where 50 percent of the bed mixture is finer (ft)

Critical shear stress (Ibf/sq. ft) was developed for each index point using the methodology
described in U.S. Army Corps of Engineers (1994) Engineer Manual 1110-2-1418. A
dimensionless Shield’s parameter of 0.06 was used to calculate the critical shear stress for

! The point of incipient motion of a particle is the critical condition between transport and no transport. The
force acting on a particle in the direction of flow is a shear force which is due to a shear stress 1, (1bf/sq. ft).
The shear stress associated with the point of incipient motion is the critical shear stress t. = 1, (Ibf/sq. ft).
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each of the index points (see Table 1). Using U.S. Army Corps of Engineers (1994)
guidance, a particle size of Dsp was selected to be the representative size for bed material.
The Ds for index points 5, 6, 7, 9, Stagegage, and ECORP-2 are derived form the
particle size distribution curves presented in Appendix 1. Particle sizes were too small to
conduct a Wolman Count at index point 11 and the Dsg size was estimated visually to be
10 mm . A Dsg size at index point 14 was not obtained due to access limitations and was
assumed to be the same as that of index point 11. The Dsg and 1. for each index point are
summarized in Table 3.7, as are critical velocity and critical discharge.

Table 3.7 Ds, Particle Sizes and Critical Parameters
used in Shear Index Calculations

Critical Critical Critical
Geomorphic Dso Shear Stress ~ Velocity Discharge
Index Point (mm) (Ibf/sq. ft) (fps) (cfs)
Stagegage 35 0.7 4 176
ECORP-2 40 0.8 4 228
5 43 0.9 6* 4000*
6 19 0.4 4 51
7 36 0.7 5 259
9 50 1 6 321
11 10 0.2 2% 200%*
14 10 0.2 2 30

*Number associated with the largest value calculated for the flow range tested. The
actual value is greater than the value shown

Velocity and shear stress duration curves were developed to show the distribution of
velocities and shear stresses in comparison to the exceedance probability of occurrence.
Critical discharge, velocity, and shear stress values are shown in each curve to identify
the distribution of values affecting the shear stress index (see Figures A2.1-A2.24 in
Appendix 2).

Shear Stress Index Ratio

The relative change in excess shear stress for proposed versus existing conditions is
evaluated by a shear stress index ratio (Rs). The shear stress index ratio is the ratio
between the proposed condition and existing condition cumulative integrated shear index
function (Rs = XSprop/ZSkxist). The shear stress index ratio thus provides a non-
dimensional measure of the changes in total shear stress applied over the entire range of
discharges for both existing and modified watershed conditions.

3.4.2 Results

Based on the methodology described above, shear stress index curves and shear stress
index ratios were developed at each geomorphic index point. Table 2 shows the shear
stress index ratios and the percent increase from existing to proposed conditions at each
index point. Figure 3.5 is an example of the shear stress index curve at index point
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Stagegage. Shear stress index curves for all of the geomorphic index points are located in
Appendix 2 (Figures A2.48-A2.55).

Table 3.8 Shear Stress Index Results

Geomorphic ~ Shear Stress
Index Point Index Ratio % Increase

Stagegage 1.27 27%
ECORP-2 1.30 30%
5 K3k kK

6 1.61 61%
7 1.01 1%
9 1.22 22%
11 K3k kK

14 1.58 58%

** At these geomorphic index points there is no excess
shear stress for any of flows within the range tested in
this study

At index points 5 and 11 in Table 3.8, the actual average shear stress is lower than the
critical shear stress for every flow that was tested in this study. Figures A2.9 and A2.24
in Appendix 2 show the critical shear stress plotted with shear duration curves for each of
these locations.

3.4.3 Discussion

Figure 3.5 shows a sample shear stress index curve for index point “Stagegage”. The
maximum shear stress exerted at this point is during discharges between 200 and 900 cfs
for existing conditions and 150 and 1000 cfs for proposed conditions. The net increase of
excess shear stress exerted on the channel bed material for proposed versus existing
conditions yields a shear stress index ratio of R<=1.27. This means that there is a 27%
increase in the excess shear stress under proposed conditions that may cause an increase
in erosion at the Stagegage cross section. Shear stress ratios that are equal to or close to 1
indicate that there is no significant increase in excess shear stress at a given cross section.

In contrast, index points 5 and 11 are very mildly sloped sections in the drainage. Since
applied average shear stress is a function of slope, the average shear stress is lower in
these sections. In this case, the average shear stress was always lower than the critical
shear stress because of the mild slopes of these sections and no shear index was
calculated.

3.5 GEOMORPHIC IMPACTS OF HYDROMODIFICATION

Results of the shear stress index analysis show that average shear stress exerted on the
channel perimeter will increase by 1% to 61% from existing to proposed conditions at the
geomorphic index points. This indicates that the potential for erosion and channel
instability will increase. Empirical studies in the San Francisco bay area showed that
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channel instability occurred in 50% of streams where the work index, determined by
sediment transport equations, exceeded 1.6 (SCVURPPP, 2005). They concluded that an
index ratio higher than 1.2 indicated the potential for channel instability. Based on this,
shear stress index results in Table 3.8 indicate the potential for future channel instability
under the proposed hydrologic conditions at 5 of the 8 geomorphic index points.

Geomorphic index points 5 and 11 exhibit an inability of flows to transport bed material
D50 sizes (see Table 3.8). Consequently, no comparison of erosion potential can be made
between existing and proposed hydrologic conditions. Low average shear stresses in
these areas are mainly due to very shallow stream gradients caused by downstream
bedrock control. Due to these constraints, any channel instability resulting from
hydromodification in these areas would be restricted to bank erosion or stream avulsion.

Widespread near surface bedrock is an important constraint on channel adjustment in the
Alder Creek watershed. Bedrock outcrops are very common throughout the stream
network. Consequently, bank erosion, at locations where bedrock is not present on the
stream banks is the expected stream response to channel instability whereas bed erosion
and stream incision are expected to be more limited.

It is important to note that hydromodification has already occurred in the Alder Creek
watershed north of Highway 50 and that streams draining this area show no channel
instability at their confluence with Alder Creek (see photos of Site 6, 7, and 8 in
Appendix 1). Runoff generated from this developed area passes through a series of
retention ponds designed to reduce peak flows to pre-developed rates as required by the
City of Folsom. Although a hydromodification analysis of pre-development versus post-
development hydrologic conditions was not conducted for this area, it appears that
whatever increased runoff volume exists is not adversely affecting channel stability at the
field inspection sites examined for this study (see Figure 2.6).

4. WATERSHED MANAGEMENT RECOMMENDATIONS

4.1 GENERAL CONSIDERATIONS

Watershed management recommendations should be developed in accordance with the
existing topographic, geomorphic, hydrologic, and climatic characteristics of the
watershed. General hydrologic and land management practices such as minimizing
encroachments into floodplains, eliminating or minimizing any in-channel encroachment
or channel modification, providing for hydrologic and sediment transport through any
bridge crossings by utilizing open span structures, minimizing or mitigating for any
hydrologic response changes through detention or retention storage, providing for
infiltration of stormwater flows, and utilizing at grade detention outlet facilities are all
state of the practice procedures that can be incorporated into facility design for proposed
land use changes. Site specific design considerations such as use of bioengineered bank
or erosion protection measures, stabilization and fluvial process enhancement of existing
channel instabilities, and siting and sizing infiltration swales, detention basins, or water
quality improvement basins should all be considered during the development of proposed
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land use changes within the Alder Creek watershed. Detailed descriptions, concept
drawings and project design features for these and other Best Management Practices
(BMPs) are available from several sources including the California Stormwater Quality
Association Best Management Practice Handbooks (CASQA, 2003), State Water
Resources Control Board (2007), California State Department of Transportation (2007),
and others (EPA, 2008; DWR, 2008).

A list of relevant BMP guidance applicable to the Alder Creek watershed was compiled
from the above standard and state of the art practice documents and is presented in
Section 4.2. These recommendations provide general guidance for future watershed
development and management in the Alder Creek basin with respect to basin hydrology
and channel stability and can most easily be applied during the planning and design phase
of new construction. Recommended BMPs pertaining to biologic and ecologic conditions
in the watershed and to local stakeholder concerns are provided in a separate report by
Edaw, Inc. The development of specific BMP design drawings for stormwater facilities in
the proposed Easton and SOI development plans is beyond the scope of this study.
Rather, this study focuses on BMP guidance recommendations that are standard and state
of the art practice and should be considered and incorporated where appropriate into the
planning and design process for new development in the Alder Creek watershed.

4.2 RECOMMENDATIONS

Site specific recommendations for minimizing hydrologic and geomorphic impacts to the
Alder Creek watershed and riparian corridor include the following standard practice
features such as:
e Detention and retention basins — for both minimizing peak flow changes, as well
as minimizing changes to flow duration characteristics
¢ Infiltration swale grading — incorporate on site infiltration swales to encourage
groundwater recharge, provide for establishment of mitigation wetland sites if
necessary, and to minimize stormwater discharge to established watercourses
e Low impact development — minimize hardscape and impermeable surface
modifications to the watershed to the extent possible
e Bioengineered stream stabilization — utilize vegetative and rock stabilization
features that provide for enhancement of riparian habitat and maintenance of
natural hydrologic and channel to floodplain interactions
e At grade outfall design — minimize slope differences between any stormwater or
detention facility outfall confluence channel with the existing receiving channel
gradient
e Channel and floodplain setbacks — minimize any encroachment into stream
channels, and limit grading and site modifications with in the 200-year floodplain
boundaries to passive activities such as greenbelt preserves for wildlife habitat
and recreation corridors.
e Bridge and culvert openings — minimize to the extent possible bridge
embankment encroachments into the channel and floodplain corridor; utilize open
bottom box culverts to allow sediment passage on smaller drainage courses
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Integration of these recommendations with the results of stakeholder meetings and
EDAW?’s technical study are anticipated next steps for the development of prioritized,
integrated BMP approaches and guidance for future construction and post-construction
(municipal stewardship) activities in the Alder Creek stream network.

5. SUMMARY AND CONCLUSIONS

The geomorphic and hydrologic analysis completed for the Alder Creek Watershed study
indicates that shallow soils, prevalence of exposed bedrock on the stream bed and banks,
and the now filled with sediment Natoma Company Dam profoundly influence the
hydrologic regime and limits the susceptibility to channel instability within much of the
presently undeveloped watershed. In spite of the apparent resilience and resistance of the
watershed’s riparian corridors to limited morphological change due to the proposed
watershed development, site specific design considerations such as those described above
should be considered in the design of any proposed land use changes within the
watershed. These recommendations are generally easily accommodated by minimizing
encroachments into riparian and floodplain corridors and minimizing grading and
changes to surface permeability characteristics of the watershed.

5.1 STUDY LIMITATIONS

The primary limitation in this study is the lack of hydrologic data. The watershed is
presently ungaged and no historical flow or precipitation gage data are available, nor has
a continuous simulation model been developed based on regional data. Ideally, flow
duration curves are developed from continuous flow data over a long-duration period of
record or from continuous simulation model results. Flow duration curves in this study
were developed from 24-hour storm event hydrographs and monthly averaged flow data.
These results are considered preliminary and useful for screening purposes given that
identical approaches were used in the development of flow duration curves for pre- and
post-project hydrologic conditions.

The shear stress index method used in this study is not a direct measure of instream
erosion and uses representative, averaged values to represent a range of shear stress
conditions. It provides an approximate estimate of real change that is most useful when
making relative comparisons between pre- and post-project hydrologic conditions to
identify likely trends.

A peak flow of 1,460 cfs were measured by E-Corp at the stagegage index point during a
storm on January 4", 2008. We noted during our February, 2008 field inspection that bed
material in the majority of some areas was covered with algae and had not moved during
the storm event; however, the critical flow velocity at stagegage is estimated to be 221 cfs
(see fig. A2.1 in Appendix 2). These types of variations in bed material size, imbrication,
and local hydraulic conditions that locally affect critical shear stress were not accounted
for in the shear stress index approach completed for this study.
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Additional limitations in this study include an assessment of sediment supply changes
following land development, impacts of detention and retention basins on the post-project
flow duration curves, and the effects of nuisance flows on instream vegetation and
consequent impacts on bed and bank erosion rates. These items are discussed further in
the recommendations section.

5.2 RECOMMENDATIONS FOR FUTURE WORK

Recommendations for future work largely stem from the limitations outlined above. The
results of this study indicate the potential for higher instream erosion and an increase in
the likelihood of channel instability at 5 of 8 geomorphic index points under proposed
conditions. As a result, we recommend that refinements be made to the
hydromodification analysis in order to provide specific recommendations for
hydromodification mitigation. First, a regional analysis should be conducted to develop a
continuous simulation hydrologic model of the Alder Creek basin. Proposed
hydromodification mitigation design alternatives (such as detention basins) can then be
introduced into the model to assess effects on flow duration curves for existing and
proposed conditions.

Following these improvements to the flow duration curves, additional refinements to the
hydromodification analysis can be conducted. These include the calculation of applied
and critical shear stress for in-channel and floodplain areas that account for changes in
hydraulic conditions, bed and bank material, and vegetation along the banks and on the
floodplain. The number of geomorphic index points in the watershed could be expanded,
particularly in the upper watershed where access was limited to one site for this study.
Lastly, incorporation of the expected decrease in sediment supply between existing and
proposed conditions could be implemented into the shear stress index ratio method.
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Appendix 1

Cross-Section Surveys
Longitudinal Profiles
Bed Material Particle Size Distributions

Field Photos



Appendix 1
Cross-Section Surveys

Notes:

Cross-section surveys for Sites 5, 6, 7, 8, and 9 collected for this study by Mackay &
Somps, Inc.

Cross-section for Site 3 obtained from 1-ft contour topography provided by Mackay &
Somps (2005).

Cross-sections for Sites 11, 12, 13, and 14 obtained from 2-ft contour topography
provided by Mackay Somps (2006).

Cross-section surveys for Sites ECORP-1, 2, 3, 4 and Stagegage collected by ECORP
Inc. (Christner, pers. comm.)
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Appendix 1
Longitudinal Profiles

Notes:

Longitudinal profiles for Sites 5, 6, 7, 8, and 9 collected for this study by Mackay &
Somps, Inc.

Longitudinal profile for Site 3 obtained from 1-ft contour topography provided by
Mackay & Somps (2005).

Longitudinal profiles for Sites 11, 12, 13, and 14 obtained from 2-ft contour topography
provided by Mackay Somps (2006).

Longitudinal profiles for Sites ECORP-1, 2, 3, 4 and Stagegage collected by ECORP Inc.
(Christner, pers. comm.)
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Appendix 1
Bed Material Particle Size Distributions

Notes:
Bed material samples for Sites 5, 6, 7, 8, and 9 collected for this study by nhe.

Bed material samples for Sites ECORP-1, 2, 3, 4 and Stagegage collected by ECORP Inc.
(Christner, pers. comm.)

Bed material samples were not collected at Sites 3 and 11 but D5, estimates were made
from field photographs of bed material.

Bed material samples could not be collected at Sites 12, 13, and 14 due to lack of access.
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Appendix 1
Field Photos

Notes:

All field photographs taken by nhc on February 6™ and 7™, 2008.



Site 3 — Looking upstream at retention pond downstream of Site 3.




Site 5 — Looking downstream




Site 6 — Looking downstream




Site 7 — Looking upstream




Site 8 — Looking downstream




Site 9 — Looking downstream




Site 11 — Looking upstream

Site 11 — Looking downstream




Site 12 — Looking downstream

¥

=

Site 13 — Looking downstream




Site 14 — Looking downstream

Site ECORP-1 — Looking downstream




Site ECORP-2 — Looking from left to right bank




Site ECORP-3 — Looking downstream




Site ECORP-4 — Looking downstream




Site Stagegage — Looking upstream




Appendix 2

Duration Frequency Distributions
Rating Curves

Shear Index Distributions



Appendix 2
Duration Frequency Distributions

Notes:

Duration frequency distributions are generated for geomorphic index points (sites 5, 6,7, 9, 11,
14, ECORP-2, and Stagegage)
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Figure A2. 2: Velocity duration frequency curve at the Stagegage geomorphic index point
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Figure A2. 4: Discharge duration frequency curve at the ECORP-2 geomorphic index point
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Figure A2. 6: Shear stress duration frequency curve at the ECORP-2 geomorphic index point
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Figure A2. 11: Velocity duration frequency curve at geomorphic index point #6
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Figure A2. 12: Shear stress duration frequency curve at geomorphic index point #6
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Figure A2. 13: Discharge duration frequency curve at geomorphic index point #7
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Figure A2. 14: Velocity duration frequency curve at geomorphic index point #7



Shear Stress (Ibf/sq. ft)

Discharge (cfs)

Index Point #7

1.2
r Existing
[ ——Proposed
1 -
0.8
| Critical Shear Stress
0.6 +
0.4 +
0.2 +
0.0001 0.001 0.01 0.1 1 10 100
Percent time shear stress is greater than or equal to
Figure A2. 15: Shear stress duration frequency curve at geomorphic index point #7
Index Point #9
3000
[ Existing
L —Proposed
r Critical Discharge
0.0001 0.001 0.01 0.1 1 10 100

Percent time discharge is greater than or equal to

Figure A2. 16: Discharge duration frequency curve at geomorphic index point #9
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Figure A2. 17: Velocity duration frequency curve at geomorphic index point #9
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Figure A2. 18: Shear stress duration frequency curve at geomorphic index point #9
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Figure A2. 20: Velocity duration frequency curve at geomorphic index point #11
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Figure A2. 21: Shear stress duration frequency curve at geomorphic index point #11
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Figure A2. 22: Discharge duration frequency curve at geomorphic index point #14
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Figure A2. 23: Velocity duration frequency curve at geomorphic index point #14
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Appendix 2
Rating Curves

Notes:

Rating curves are generated for geomorphic index points (sites 5, 6, 7, 9, 11, 14, ECORP-2, and
Stagegage)

Rating curve relationships included are discharge versus stage, normal velocity versus stage, and
average shear stress versus stage.

Hydrologic inputs for 2, 5, 10, and 100 year flood events are from Domenichelli and Associates
(2007).

Hydraulic Inputs for cross sectional geometry, slope, and roughness are generated from data
shown in Appendix 1
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Figure A2. 25: Velocity versus stage relationship for the Stagegage geomorphic index point
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Figure A2. 27: Discharge versus stage relationship for the ECORP-2 cross section geomorphic index point
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Figure A2. 29: Shear stress versus stage relationship for the ECORP-2 cross section geomorphic index point
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Figure A2. 31: Velocity versus stage relationship for geomorphic index point #5
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Figure A2. 33: Discharge versus stage relationship for geomorphic index point #6
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Figure A2. 35: Shear stress versus stage relationship for geomorphic index point #6
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Figure A2. 37: Velocity versus stage relationship for geomorphic index point #7
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Figure A2. 39: Discharge versus stage relationship for geomorphic index point #9
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Figure A2. 41: Shear stress versus stage relationship for geomorphic index point #9
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Figure A2. 42: Discharge versus stage relationship for geomorphic index point #11
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Figure A2. 43: Velocity versus stage relationship for geomorphic index point #11
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Appendix 2
Shear Index Distributions

Notes:

Shear index distributions are generated for geomorphic index points (sites 5, 6, 7, 9, 11, 14,
ECORP-2, and Stagegage)

Hydraulics are generated using HydroCalc© (Molls, 2008)

The Ds at index points 5, 6, 7, 9, Stagegage and ECORP-2 are obtained form the bed material
particle size distributions shown in Appendix 1.

No particle size data was available for Index points 11 and 14. The D5 at index points 11 and 14
are estimated to be the same as index point 9.
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Figure A2. 48: Shear stress index for the Stagegage geomorphic index point
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Figure A2. 49: Shear stress index for the ECORP-2 geomorphic index point
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Figure A2. 50: Shear stress index for the geomorphic index point #5
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Figure A2. 51: Shear stress index for the geomorphic index point #6

225

Shear Stress Index

Shear Stress Index



Percent time discharge is

Percent time discharge is

greater than or equal to

greater than or equal to

100

10

0.1

0.001

0.0001

100

10

0.1

0.001

0.0001

Index Point #7

Shear Stress Index

Flow Range (cfs)

— Flow Existing —— Flow Proposed

—— Shear Stress Index Existing (unitless) —— Shear Stress Index Proposed (unitless)

Figure A2. 52: Shear stress index for the geomorphic index point #7
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Figure A2. 53: Shear stress index for the geomorphic index point #9
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Figure A2. 54: Shear stress index for the geomorphic index point #11
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