#### ADDENDUM NO. 3 CITY OF FOLSOM Water Treatment Plant Backwash and Recycled Water Capacity Project

#### ISSUED BY THE CITY OF FOLSOM

#### ENVIRONMENTAL AND WATER RESOURCES DEPARTMENT

This addendum shall be considered part of the Project Manual for the City of Folsom Water Treatment Plant Backwash and Recycled Water Capacity Project.

#### **General Comments:**

- 1. Revise Specification Section 43 25 13 PUMPING EQUIPMENT SUBMERSIBLE PUMPS to replace Article 2.4. K.5 with the following:
  - "5. Furnish guiding rail assembly and the discharge flange assembly with either an epoxy coated cast-iron or duplex stainless steel components."
- 2. Revise Specification Section 43 25 13 PUMPING EQUIPMENT SUBMERSIBLE PUMPS to replace Article 2.4. K.7 with the following:
  - "7. Provide pump unit connecting to discharge connection with a simple downward motion without rotation. The entire weight of the pumping unit shall wedge tightly against the discharge elbow flange forming a seal."

The following questions have been submitted to the City following the Non-Mandatory Pre-Bid Meeting:

#### <u>Question 1:</u> Will a project sign be required for the project?

<u>Response</u>: No, a project sign will not be required as part of this project.

#### **<u>Question 2:</u>** Will SWPPP be required for this project?

<u>Response:</u> Included as Appendix A of the Project Manual are the SWPPP requirements for less than an acre.

## <u>Question 3:</u> Will any permits be required by the City of Folsom, or any other agencies, not referenced within the spec. section?

Response: No other permits for this project are anticipated.

## <u>*Question 4:</u>* Based on the small amount of concrete being replaced, will 'contractor' testing be required?</u>

<u>Response:</u> Special inspections will be provided by the City's construction management representative.

#### Question 5: Please confirm owner will be providing soil compaction testing for the project.

<u>Response:</u> Special inspections will be provided by the City's construction management representative. If additional inspections are required due to compaction testing, welding inspections, etc. not passing then additional inspections and/or testing will be paid for by the contractor.

## <u>Question 6:</u> Drawing G04; Temporary bypass piping referenced in Phase I (VII) and Phase 2 (II) will be connecting to the existing 12" RBW line. Please confirm.

<u>Response:</u> Temporary bypass piping referenced on the plans will connect to the existing 12" RBW line as shown on the project drawings.

## <u>Question 7:</u> Section 1 on D01 calls out the 12" RBW line as DIP, Section 1 on SP01 calls the pipe out as "PVC", what is the correct pipe type?

<u>Response:</u> The new RBW piping is specified to be ductile iron pipe (DIP), while the old/existing 12" RBW piping is shown on the records drawings to be PVC.

## <u>Question 8:</u> Does the City have a soils report available for the trenched and excavated areas of work?

<u>Response:</u> Previous Water Treatment Plan geotechnical reports have been included as part of Addendum No.3 in Attachment 1.

# <u>Question 9:</u> Drawing G04; Phase I (Item V), once the decant pumps draw down the maximum amount of water they can pump, how much water will be remaining in the basin (depth of water), for minor dewatering?

<u>Response:</u> Based on the best available information, it is assumed there will be approximately three (3) feet of water depth remaining in the basin and decant pump station.

# <u>Question 10:</u> Drawing G 04; Phase I (item V-A), how much 'sludge' should the Contractor expect (in volume) to be removed from each basin? Please identify by a drawing, showing the location of the sludge drying bed where the sludge will be disposed of.

<u>Response:</u> There is approximately 22 inches of sludge at the northern end of the basin near the pump station and 10 inches of sludge at the southern end of the basin near the proposed 36" pipeline work. The intent for sludge removal is to relocate the sludge from the area of

proposed work (dry side) to the portion of the basin that is dammed off and will not have any work performed (wet side).

## <u>Question 11:</u> Does the city of Folsom have an elevation or depth of sludge in the reclamation backwash basins that the contractor will need to remove?

<u>Response</u>: There is approximately 22 inches of sludge at the northern end of the basin near the pump station and 10 inches of sludge at the southern end of the basin near the proposed 36" pipeline work.

## <u>Question 12:</u> Will the City of Folsom be setting aside an onsite staging area for the performance of this work?

<u>Response:</u> Updated 100% Drawings show location of allowable staging area at the Water Treatment Plant. Updated drawings have been included as part of Addendum No.3 in Attachment 2.

#### <u>Question 13:</u> On Drawing Sheet G04, Sequencing Notes, Phase 1, Item V. A., states the sludge in the bottom of the basins shall be pumped out to onsite sludge drying bed in order to completely clean the area surrounding the Decant PS to facilitate work.

- a. Can you clarify the exact area, depth, and volume of sludge to be removed?
- b. The sludge underneath the cofferdam footprint will need to be removed prior to installing the cofferdam in order to get a good seal. This will be a lot of work to accomplish in a 24-hour shutdown. Can we do the cofferdam in one basin in one 24-hr shutdown, then the other basin in a separate 24-hr shutdown?
- c. Can you clarify exactly where the drying bed is where the sludge will be placed?
- d. Please confirm the City will drain the basins prior to sludge removal and cofferdam installations.

#### Response:

- a. There is approximately 22 inches of sludge at the northern end of the basin near the pump station and 10 inches of sludge at the southern end of the basin near the proposed 36" pipeline work. Exact area and volume of sludge to be removed is dependent on contractor methods for cofferdam or other alternative methods of damming the work areas.
- b. If more than one, 24 hour shut down is requested/required by the contractor, the timing must be coordinated with the Water Treatment Plant staff to allow for normal plant operations.
- c. The intent for sludge removal is to relocate the sludge from the area of proposed work (dry side) to the portion of the basin that is dammed off and will not have any work performed (wet side).
- d. The City will drain the basin to the lowest existing pumping level. Residual water that needs to be removed to allow for sludge removal or dam installation, etc. is the Contractor's responsibility.

## <u>Question 14:</u> Phase III, Item III., can the removal of the 2 cofferdams be accomplished in 2 separate 24-hr shutdowns? One shutdown for each cofferdam removal.

<u>Response:</u> Yes, two shutdowns to allow for construction are possible as long as there is seven (7) days minimum between shutdowns.

#### <u>*Question 15:*</u> Can the City please clarify the sequence of work in the plans?

<u>Response:</u> Updated 100% Drawings have been included as part of Addendum No.3 in Attachment 2.

#### <u>Question 16:</u> Drawing Sheet C01, Note near middle of page states, "FIELD WELD 150# FLANGE ON EXISTING PIPE" and Detail 1, these do not appear to apply since this is within the new section of pipe. Please clarify.

<u>Response:</u> On sheet C01, grid C-4, modify callout "FIELD WELD 150# FLANGE ON EXISTING PIPE" to "FLANGED CONNECTION TO ACCOMMODATE DISMANTLING JOINT, TYP OF 2" and delete detail 1 symbology. The flange in question, which is also shown in detail 3 for the dismantling joint, may be factory installed.

# <u>Question 17:</u> In regard to this project per Plans page G04, under General Notes, section ii, part D requires the use of NSF-61 certified pumps for the temporary bypass. Only permanently installed pump options exist with the NSF-61 certification capable of handling the projects flow requirements. Temporary bypass pumps that meet this specification are very limited. Can the specification be revised to include additional pump options?

<u>Response:</u> Only NSF-61 pumps that are for use in clean-water applications are allowed for work within the Water Treatment Plant and as part of this project.

# <u>Question 18:</u> Tesco Controls is specified in 406113 -1.1A3, 406113-1.2B1, 406113-1.4B1, 406113-2.2A and 406113-3.1A for the Integration work on the project. Can Telstar be added as an alternative Integrator to Tesco?

<u>Response:</u> Any licensed and qualified contractor is allowed to perform electrical work for the project. However, due existing infrastructure and SCADA controls, Tesco is required to perform the system integration as specified.

.

The changes detailed in this Addendum No.3, issued by the City of Folsom Environmental and Water Resources Department.

Date: 3/16/2022


Marcus Yasutake, PE

Marcus Yasutake, PE Environmental and Water Resources Director City of Folsom

### ATTACHMENT 1 – PREVIOUS WATER TREATMENT PLANT GEOTECHNICAL REPORTS

GEOTECHNICAL ENGINEERING STUDY for FOLSOM WATER TREATMENT PLANT Phase 4 Upgrade & Expansion East Natoma Street and Randall Drive Folsom, California

> Project No. 95176.8 April 2003







1234 Glenhaven Court, El Dorado Hills, Ca 95762 5750 Arabian Lane, Loomis, Ca 95650 ph 916.933.0633 fx 916.933.6482



Malcolm Pirnie 90 Blue Ravine Road, Suite 190 Sacramento, California 95630

Attention: Mr. Rick Kennedy

Subject: FOLSOM WATER TREATMENT PLANT - PHASE 4 UPGRADE & EXPANSION East Natoma Street and Randall Drive, Folsom, California GEOTECHNICAL ENGINEERING STUDY

References:

 Subcontractor Agreement for Professional Consultant Services, dated 30 January 2003.
 Geotechnical Engineering Study for Folsom Water Treatment Plant - Proposed Clearwell, prepared by Youngdahl Consulting Group, Inc., dated 2 August 2001 (Project No. 95176.7).
 Geotechnical Engineering Study Update, Folsom Water Treatment Plant, Phase 3

Expansion Prepared By: Youngdahl & Associates, Inc., Dated October 1996 (Project No. 95176.3E).

4) Geotechnical Engineering Study for Folsom Water Treatment Plant, Phase 2 Expansion Prepared By: Youngdahl & Associates, Inc., Dated July 1995 (Project No. 95176.E).

Dear Mr. Kennedy:

In accordance with your authorization, Youngdahl Consulting Group, Inc., has performed a geotechnical engineering study for the proposed Phase 4 expansion of the existing Folsom Water Treatment Plant in Folsom, California. The purpose of this study was to explore and evaluate the surface and subsurface soil conditions at the site and to develop geotechnical information and design criteria for the proposed project. Our scope was limited to a subsurface exploration, laboratory testing, and preparation of this report per the referenced Subcontractor Agreement.

Based upon our field study, subsurface exploration program, laboratory testing and engineering analysis, we believe the primary geotechnical issues to be addressed consist of the presence of shallow BEDROCK. Other geotechnical issues may become more apparent during mass grading operations which are not listed above. The descriptions, findings, conclusions and recommendations provided in this report are formulated as a whole and specific conclusions or recommendations should not be derived or used out of context. Please review the limitations and uniformity of conditions section of this report. This report has been prepared for the exclusive use of Malcolm Pirnie and their consultants, for specific application to this project, in accordance with generally accepted geotechnical engineering practice. Should you have any questions or require additional information, please contact our office at your convenience.

Very truly yours, Youngdahl Consulting Group, Inc.

Reviewed by:

John C. Youngdahl, P.E Principal Engineer



Robert F. Black, P.E. Project Engineer

Distribution: (4) to Client

RFB:RCK:JCY

#### TABLE OF CONTENTS

| 1.0  | INTRODUCTION                                                                                                                                                                                                                                    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0  | PROJECT DESCRIPTION1                                                                                                                                                                                                                            |
| 3.0  | SITE DESCRIPTION13.1Background13.2Surface Observations23.3Subsurface Exploration23.4Subsurface Conditions23.5Geologic Conditions33.6Laboratory Testing43.7Seismic Refraction Survey4                                                            |
| 4.0  | CONCLUSIONS                                                                                                                                                                                                                                     |
| 5.0  | RECOMMENDATIONS65.1General5.2Site Preparation5.3Engineered Fills5.4Slope Grading5.5Finish Soilgrade Preparation5.6Drainage Considerations5.7Seismic Design Criteria5.8Foundations5.9Underground Facilities Construction5.10Retaining Walls5.212 |
| 6.0  | LIMITATIONS AND UNIFORMITY OF CONDITIONS                                                                                                                                                                                                        |
| CHEC | (LIST OF RECOMMENDED SERVICES                                                                                                                                                                                                                   |
| APPE | NDIX A15Field study16Vicinity Map (Figure A-1)17Site Map (Figure A-2)18Logs of Exploratory Borings (Figures A-3 through A-5)19-21Soil Classification Chart and Boring Log Legend (Figure A-6)22                                                 |
| APPE | NDIX B23Laboratory Testing24Sieve Analysis (Figure B-2)25Proctor Curve (Figure B-3)26                                                                                                                                                           |

#### APPENDIX C

Refraction Seismic Rippability/Excavatibility and Seismic Shear Wave Investigation

#### GEOTECHNICAL ENGINEERING STUDY for FOLSOM WATER TREATMENT PLANT Phase 4 Upgrade and Expansion East Natoma Street and Randall Drive Folsom, California

#### 1.0 INTRODUCTION

This report presents the results of our Geotechnical Engineering Study performed for the proposed Phase 4 improvements planned to be constructed at the Folsom Water Treatment Plant in Folsom, California. Refer to Figure A-1 for a vicinity map for the project site.

#### 1.1 **Purpose and Scope**

The purpose of this study was to explore and evaluate the surface and subsurface conditions at the site and to develop geotechnical information and design criteria for the proposed project. The scope of this study includes the following:

- 1. A review of geotechnical and geologic data available to us at the time of our study.
- 2. A field study consisting of a visual site reconnaissance, followed by an exploratory boring program. Geophysical seismic refraction lines were used to characterize the subsurface rock conditions.
- 3. A laboratory testing program performed on representative samples collected during our field study.
- 4. Engineering analysis of the data and information obtained from our field study, laboratory testing, and literature review. Development of recommendations for site preparation and grading, and geotechnical design criteria for foundations, retaining structures, and underground facilities.
- 5. Preparation of this report summarizing our findings, conclusions, and recommendations regarding the geotechnical aspects for the project.

#### 2.0 PROJECT DESCRIPTION

Based on a review of the project plans provided by the client, proposed construction is expected to include new Actiflo basins, new filtration basins, and a new chlorine contact tank, as well as new underground utilities. All of the structures will be of reinforced, cast-in-place concrete construction on reinforced mat foundations two feet thick. All of the structures will require excavation below the existing grade to varying depths. The maximum excavation depth of approximately 30 feet will be required at the proposed Actiflo facility, and 25 feet for the chlorine contact tank and filters.

#### 3.0 SITE DESCRIPTION

#### 3.1 Background

Review of our records indicate that the Actiflo facility and filtration basin locations are within native and/or minimally disturbed areas of the site. The proposed chlorine contact tank location is within an area which has been filled in during previous development of the site. The fill is anticipated to be highly variable in composition and compaction. If studies or plans exist that pertain to the site which are not cited as a reference in this report, we should be afforded the opportunity to review and modify our conclusions and recommendations as necessary.

#### 3.2 Surface Observations

The project sites are located within the existing Folsom Water Treatment Plant located on East Natoma Street and Randall Road in Folsom, California. The proposed Actiflo basin is to be located on the northeast side of the existing sedimentation basin; the proposed new filters are to be located on the northeast side of the existing conventional filter area; and the proposed chlorine contact tank is to be located southeast of the existing ABW filters.

Topography varies from relatively flat within the proposed chlorine contact tank and filter areas, to mildly sloping within the Actiflo basin area. Site vegetation consists of a minor growth of grasses.

The aforementioned site description was based on our site visit, as well as a review of the site plan provided by the client, which forms the basis for our site plan, Figure A-2, Appendix A.

#### 3.3 Subsurface Exploration

Our field study included a site reconnaissance by a Youngdahl Consulting Group, Inc., representative followed by a subsurface exploration program conducted on 17 March 2003, which included the advancing of 3 exploratory borings under his direction at the approximate locations shown on Figure A-2, Appendix A. Our exploratory borings were advanced with a solid flight auger, using a truck-mounted drill rig operated by an independent drilling firm working under subcontract to Youngdahl Consulting Group, Inc. An engineer from our firm logged the subsurface conditions and collected representative samples. All samples were stored in watertight containers and later transported to our laboratory for further visual examination and testing. After each boring was completed, the borehole was backfilled with soil cuttings. Refer to Appendix B for a more detailed description of the subsurface exploration procedure.

#### 3.4 Subsurface Conditions

The borings encountered relatively similar subsurface conditions; Borings B-1 and B-2 encountered surface soils consisting of brown sandy CLAY and clayey GRAVEL/SAND (completely weathered bedrock) in a moist and medium stiff/dense condition to a depth of 3 feet. Boring B-3 encountered FILL material consisting of brown silty GRAVEL with sand and rock fragments in a moist and medium dense condition to a depth of 8 feet, underlain by native brown SILT in a moist and medium dense condition to a depth of 10 ½ feet.

Underlying the surface fills and native soils to the maximum depth explored in each boring, gray completely to highly weathered metavolcanic BEDROCK was encountered. The bedrock graded moderately weathered at the bottom of each boring; practical refusal was encountered in Borings B-1 and B-2 at a depth of 12 feet and 10 feet, respectively.

A more detailed description of the subsurface conditions encountered is presented graphically on the "Exploratory Boring Logs", Figures A-3 through A-5, presented in Appendix A. These logs show a graphic interpretation of the subsurface profile, the location and depths at which samples were collected and selected laboratory test results.

Free groundwater was not encountered in the borings completed for this project; however, Borings B-1 and B-2 were not carried to design depth of the proposed improvements due to equipment refusal. A review of our previous work done in the vicinity of the two borings above indicates that free groundwater was generally not encountered during our subsurface exploration or during construction of the existing improvements. Therefore, we do not anticipate that groundwater would be encountered in the above areas. Elsewhere on site, groundwater levels could fluctuate depending on rainfall amounts, on and offsite construction activities, and other factors.

Groundwater was encountered at an approximate elevation of 358 feet during our previous work in the vicinity of the chlorine contact tank (see reference 2). However, at this depth it is not anticipated to affect the proposed tank. Perched groundwater and/or seepage could be encountered anywhere on site near the soil/bedrock contact after particularly wet winters, or due to other water sources such as on and off site landscaping, surface water runoff, etc.

#### 3.5 Geologic Conditions

The geologic portion of this report included a review of geologic data pertinent to the site, and an interpretation of our observations and the Logs of Exploratory Borings drilled during the field study. The site is located at the foot of the Sierra Foothills region of the Sierra Nevada Mountain Range. According to the 1:48,000 scale Generalized Geology of the Folsom 15 minute quadrangle, the project site is underlain by metavolcanic rock of the Copper Hill Volcanics formation of Mesozoic Age (R.C. Loyd, 1984).

According to the Fault Activity Map of California and Adjacent Areas (Jennings, 1994) and the "Maps of Known Active Fault Near-Source Zones in California and Adjacent Portions of Nevada" (USGS/ICBO, 1998), no active faults or Earthquake Fault Zones (Special Studies Zones) are located on the project site. No evidence of recent or active faulting was observed during our field study. Major structural features in the area are related to the Bear Mountains Fault Zone, the Foothill-Melones Fault Zone, and Mormon Island Shear Zone. The Mormon Island Shear Zone straddles the El Dorado County-Sacramento County line about 2 1/2 miles east of the site. The Bear Mountain Fault Zone has two traces in the Sierra Foothills. The west branch of this fault zone is mapped approximately 3 ½ miles east of the site in El Dorado Hills. The east branch is mapped approximately 12 miles east in Shingle Springs. The Melones Fault Zone is located about 20 miles east of the site in Placerville. The Bear Mountain and Melones Faults are considered only potentially active, with the last movement on either fault estimated to have occurred more than two million years ago. The nearest mapped active fault to the site is the Dunnigan Hills fault located about 38 miles to the west-northwest. Strong earthquakes generated along any of the faults within the region may affect the site depending on the characteristics of the earthquake and the location of the epicenter. In general, the effects will be confined to those phenomena associated with shaking and/or ground acceleration. These effects can be minimized by appropriate design and construction procedures.

<u>Seismicity</u>: Deterministic attenuation relationships developed by Boore, Joyner, and Fumal (1994, 1997) yield a predicted peak horizontal ground acceleration (PHGA) for the site from the Mormon Island Shear Zone of 0.3g. The California Seismic Hazard Map, based upon maximum credible earthquakes, produced by Caltrans (Maulchin, 1996) also predicts of PHGA of roughly 0.3g. The predicted peak vertical ground acceleration for the site is estimated to be two-thirds of the above value, or 0.2g. According to the Seismic Shaking Hazard Map of California (Petersen, M.D. and others, 1999), the site can probabilistically be expected to experience a peak horizontal ground acceleration of 0.2g (10 percent probability of exceedence in 50 years).

Based on the proposed foundation elevations, we expect weathered bedrock materials. As such, seismically induced settlement is expected to be negligible. Engineered fills placed and compacted according the recommendations outlined in Section 5.3 of this report are also anticipated to perform adequately.

#### 3.6 Laboratory Testing

The laboratory testing of collected samples was directed towards determining the physical and engineering properties of the soil underlying the site. A description of the tests performed and their results are presented in Appendix B.

#### 3.7 Seismic Refraction Survey

Seismic lines (see attached Seismic Rippability Investigation prepared by Gasch & Associates, Inc.: Appendix C) performed at the project site give an indication of the amount of effort that may be required for excavation during construction. Seismic lines were conducted along the proposed location of the Actiflo basin during this study, as well as near the proposed chlorine contact tank during our previous work on site (Reference 2). A standard impact hammer/plate with trip sensor was employed to generate seismic signals along the roadway.

The study compiled in the attached report was conducted with state-of-the-technology geophysical equipment operated by an experienced geophysical team, familiar with the local geology and the typical engineering characteristics of the local metavolcanic bedrock. While every attempt has been made to provide accuracy and reliability to the findings submitted, readers and users of the attached report must keep in mind that the profiles and estimated depths to non-rippable rock are professional interpretations based on experience and familiarity with the equipment and software used. As such, site-specific conditions may be encountered on a localized basis that differ from the professional interpretations expressed in this engineering geologic evaluation and the geophysicists's attached seismic refraction rippability report.

#### 4.0 CONCLUSIONS

We offer the following general geotechnical conclusions concerning this development project.

<u>Site Suitability</u>: The native soils, rock, and/or engineered fills composed of like materials and processed and compacted as recommended below are considered suitable for support of the planned improvements. The existing fill encountered in Boring No. B-3 is not anticipated to affect the proposed tank based on the foundation elevation. Other improvements such as underground utilities, equipment pads, and other structures at or near the surface could be affected, depending on their configuration and the condition of the material at that location. A determination of the condition of any fill material and its extent can be made at the time of grading, and specific recommendations provided at that time. General recommendations have been provided in the "Site Preparation" and "Engineered Fill" sections of this report to address any fills encountered on site.

<u>Expansive Soils</u>: The sandy silts, sands and rock materials encountered on the site are non-plastic materials which are considered to be relatively non-expansive. We encountered plastic clays which, based on our laboratory testing, are considered to be moderately to highly expansive. However, due to their limited presence, and provided they are removed from the proposed development area when encountered, special design considerations are not anticipated to be necessary.

<u>Groundwater</u>: Free groundwater was not encountered in the borings completed for this project; however, Borings B-1 and B-2 were not carried to design depth of the proposed improvements due to equipment refusal. A review of our previous work done in the vicinity of the two borings above indicates that free groundwater was generally not encountered during our subsurface exploration or during construction of the existing improvements. Therefore, we do not anticipate that groundwater would be encountered in the above areas. Elsewhere on site, groundwater levels could fluctuate depending on rainfall amounts, on and offsite construction activities, and other factors. Groundwater was encountered at an approximate elevation of 358 feet during our previous

work in the vicinity of the chlorine contact tank (see reference 2). However, at this depth it is not anticipated to affect the proposed tank. Perched groundwater and/or seepage could be encountered anywhere on site near the soil/bedrock contact after particularly wet winters, or due to other water sources such as on and off site landscaping, surface water runoff, etc.

A perched water table often develops in shallow bedrock horizons as surface water percolates down through the surface soils and perches on top of the relatively impermeable bedrock horizon. The perched water can saturate surface soils. Saturated soils may be unstable under construction equipment, and may require considerable aeration in order to achieve a moisture content which will allow compaction. The prospect of saturated soils should be considered in construction scheduling. Water inflow into any excavation approaching hard rock surface may be experienced in all but the driest summer and fall months.

<u>Subdrainage</u>: Improvement areas constructed in cut which approach the weathered bedrock horizon may require subdrainage measures. Such measures may include installation of subdrain trenches. Youngdahl Consulting Group, Inc. should review the final development plans, when available, to obtain a preliminary indication of where subdrainage may be required. Subdrainage requirements should be based on our observations following grading.

<u>Excavation</u>: Based on the seismic refraction survey performed by Gasch & Associates (Appendix C), we expect that the site soils can be excavated using normal earthmoving equipment such as a rubber tired backhoe. The underlying rock materials can likely be excavated to depths of 30 to 40 feet using a Caterpillar D10R dozers equipped with rippers (see Caterpillar Performance Handbook, Edition 29). Deeper excavation into the less weathered rock below a depth of about 360 feet may require heavier equipment and possibly blasting.

Utility trenches may encounter isolated hard rock excavation conditions in deeper cut areas. Utility contractors should be prepared to use large excavators such as a CAT 235 or CAT 245. Blasting will most likely not be required, but cannot be precluded. Water inflow into any excavation approaching hard rock surface may be experienced in all but the driest summer and fall months.

<u>Liquefaction</u>: Liquefaction is the sudden loss of soil shear strength and sudden increase in porewater pressure caused by shear strains, as could result from an earthquake. Research has shown that saturated, loose to medium-dense sands with a silt content less than about 25 percent located within the top 40 feet are most susceptible to liquefaction. Due to the relatively shallow depth to bedrock, the potential for site liquefaction is considered negligible.

<u>Slope Stability</u>: The project site is proposed to have minor cuts and fill with a maximum slope orientation of 2H:1V (horizontal:vertical). Generally a cut slope orientation of 2H:1V is considered stable with the material types encountered on the site. A fill slope constructed at the same orientation is considered stable if compacted to the engineered fill recommendations as stated in the recommendations section of this report. All slopes should have appropriate drainage and vegetation measures to minimize erosion of slope soils.

Steeper cut slopes are feasible within the weathered bedrock for temporary construction purposes. Gradients of 1 ½ H:1V or 1H:1V are considered feasible provided the project engineering geologist is present to monitor the stability of the excavation and provide additional recommendations. Steeper fill slope gradients may be achievable through the use of geotextile materials to strengthen and/or provide erosion protection. Any slope excavations proposed to be greater than 10 feet in maximum height should be evaluated during and prior to completion of site grading.

<u>Seismic Considerations</u>: Based on our literature review and subsurface interpretations, we recommend that the project be designed in accordance with the latest applicable California Building Code (CBC), Chapter 16. This site is located within Seismic Risk Zone 3 and based on our subsurface interpretations is classified as Soil Profile Type  $S_c$ .

#### 5.0 RECOMMENDATIONS

#### 5.1 General

The site is suitable for the proposed improvements provided the recommendations presented in this report are incorporated into the project plans and specifications.

All final grading and foundation plans should be reviewed by Youngdahl Consulting Group, Inc., hereinafter described as the Geotechnical Engineer, prior to contract bidding. A review should be performed to determine whether the recommendations contained within this report are incorporated into the project plans and specifications.

The Geotechnical Engineer should be notified at least two working days before site clearing or grading operations commence, and should observe the stripping of deleterious material and provide consultation to the Grading Contractor in the field.

Our recommendations are based on limited windows into the subsurface conditions. Field observation and testing during the grading operations should be provided by the Geotechnical Engineer so that an opinion may be formed regarding the adequacy of the site preparation, the acceptability of fill materials, and the extent to which the earthwork construction and the degree of compaction comply with the project geotechnical specifications. Any work related to grading performed without the full knowledge of, and under direct observation by the Geotechnical Engineer may render the conclusions and recommendations of this report invalid.

Section 3317.8 in Appendix Chapter 33 of the latest California Building Code states that, in regard to the transfer of responsibility, if the Geotechnical Engineer of Record for the project site is not maintained through the grading phase of the project, the work shall be stopped until the replacement has agreed in writing to accept their responsibility within the area of technical competence for approval upon completion of the work. Our design recommendations should not be relied upon without our consultation, observation and testing services during all aspects of grading on the site.

We recommend that the applicable chapters of the latest edition of the CBC be adhered to during the design and construction of the proposed structures.

#### 5.2 Site Preparation

Preparation of the project site should involve temporary drainage, dust control, clearing, stripping, existing fills, and groundwater considerations. The following paragraphs state our geotechnical comments and recommendations concerning site preparation.

<u>Temporary Drainage</u>: We recommend that initial site preparation involve intercepting and diverting any potential sources of surface or near-surface water within the construction zones. Because the selection of an appropriate drainage system will depend on the water quantity, season, weather conditions, construction sequence, and contractor's methods, final decisions regarding drainage systems are best made in the field at the time of construction. All drainage and/or water diversion

performed for the site should be in accordance with the Clean Water Act and applicable Storm Water Pollution Prevention Plan.

<u>Dust Control</u>: Dust control provisions should be provided for as required by the local jurisdiction's grading ordinance (i.e. water truck or other adequate water supply during grading).

<u>Clearing and Stripping</u>: Clearing and stripping operations should remove all organic laden materials including trees, bushes, root balls, root systems, and any soft or loose material generated from removal operations. Surface grass stripping operations may be necessary depending upon the insitu conditions at the time of mass grading. Short or mowed dry grasses may be pulverized and lost within fill materials provided no concentrated pockets of organics result. It is the responsibility of the grading contractor to remove excess organics from the fill materials. No more than 2 percent of organic material, by weight, should be allowed within the fill materials at any given location.

General site clearing should also include removal of any loose or saturated materials from the proposed structural improvement and pavement areas. A representative of our firm should be present during site clearing operations to identify the location and depth of potential fills not disclosed by this report, to observe removal of deleterious materials, and to identify any existing site conditions which may require mitigation prior to site development.

<u>Existing Fills</u>: Following general site clearing, all existing fills and fill stockpiles should be overexcavated down to firm native materials. Reference should be made to the site description and boring logs for anticipated fill locations. Any depressions extending below final grade resulting from the removal of fill materials or other deleterious materials should be properly prepared as discussed below and backfilled with engineered fill. Prior to placement of engineered fill, the exposed soil surfaces receiving fills should be scarified to a minimum depth of 8 inches, moisture conditioned as necessary, and compacted to at least 90 percent of the maximum dry density based on the ASTM D1557 test method.

If existing fills were placed and documented as engineered fill materials, a review of the appropriate documentation should be performed.

Exposed Grade Compaction: Exposed soil grades following initial site preparation activities should be scarified to a minimum depth of 8 inches and compacted to the requirements for engineered fill. Prior to placing fill, the exposed subgrades should be in a firm, unyielding state. Any localized zones of soft or pumping soils observed within a subgrade should either be scarified and recompacted or be overexcavated and replaced with engineered fill as defined below in Section 5.3.

<u>Groundwater Considerations</u>: Due to the nature of the soils encountered in the area of the project site, we anticipate that a perched groundwater table may be encountered near the bedrock contact. Where cuts are proposed, subdrains may need to be installed to catch the water flowing along the soil/bedrock contact through the fractured rock.

#### 5.3 Engineered Fills

All materials placed as fills on the site should be placed as "Engineered fill" observed and compacted as described in the following paragraphs.

<u>On-site Soils</u>: We anticipate that a large amount of on-site soils will be generated during mass grading operations. We expect that soil generated from excavations on the site, excluding deleterious material, may be used as engineered fill provided the material does not exceed the maximum size specifications listed below.

Rock fragments or boulders exceeding 24 inches in maximum dimension should not be placed within the upper five feet of lot and street grade. The upper two feet of lot or street grades should consist of predominantly rocks and rock fragments less than 12 inches in maximum dimension with no more than 20 percent between 12 and 24 inches in maximum dimension. The rock fragments should be thoroughly mixed with soil so that a uniform mixture of rocks and compacted soil is obtained without voids. Boulders over 24 inches in maximum dimension should be placed within the deeper portions of fill embankments below a depth of 5 feet and a minimum of 5 feet from the finish slope face. The individual boulders should be spaced such that compaction of finer rock and soil materials between the boulders can be achieved. Materials placed between the boulders should consist of predominantly soil and rock less than 12 inches in maximum dimension. The soil/rock mixture should be placed between the boulders so as to preclude nesting or the formation of voids and compacted to the requirements of engineered fill. Should insufficient deep fill areas exist for oversize rock disposal, contractor should (at his option) either dispose of the excess materials to an offsite location or mechanically reduce the rocks to less than 24 inches in maximum dimension. The contractor should avoid placing rocks or rock fragments larger than 12 inches in maximum dimension within zones of proposed underground facilities.

<u>Fill Placement and Compaction</u>: All areas proposed to receive fill should be scarified to a minimum depth of 8 inches, moisture conditioned as necessary, and compacted to at least 90 percent of the maximum dry density based on the ASTM D1557 test method. The fill should be placed in thin horizontal lifts not to exceed 12 inches in uncompacted thickness. The fill should be moisture conditioned as necessary and compacted to a relative compaction of not less than 90 percent based on the ASTM D1557 test method. The upper 8 inches of fills placed under proposed pavement areas should be compacted to a relative compaction of not less than 95 percent based on the ASTM D1557 test method. Expansive clays, if encountered, should not be placed within the upper three feet of pad grade and subgrade level. Alternatively, clays may be mixed thoroughly with less expansive on site materials (silts, sands, and gravels). Proper disposition of clays on site should be verified by a representative of Youngdahl Consulting Group, Inc.

<u>Compaction Equipment</u>: In areas to receive structural fill, a Caterpillar 825 steel-wheel compactor, or approved equivalent should be employed as a minimum to facilitate breakdown of oversize bedrock materials and generation of soil fines during the fill placement process. If the quantity of rock fragments in the fills preclude traditional compaction testing, then the proposed fills should be compacted using method specifications as indicated below.

Soils exposed in excavations should be moisture conditioned and compacted in place by a minimum of four completely covering passes with a Caterpillar 825, or approved equivalent. The compactor's last two passes should be at 90 degrees to the initial passes. In areas where 95% relative compaction is designated, an additional two passes should be applied, with three completely covering passes made at 90 degrees to the initial three passes. Engineered fill should be constructed in lifts not exceeding 12 inches in uncompacted thickness, moisture conditioned and

compacted in accordance with the above specification. Additional passes as deemed necessary during fill placement to achieve desired condition based upon field conditions may be recommended.

<u>Import Materials</u>: If imported fill material is needed for this project, import material should be approved by the Geotechnical Engineer prior to transporting it to the project. It is preferable that import material meet the following requirements:

- 1. Plasticity index not to exceed 12.
- 2. Should not contain rocks larger than 6 inches in diameter.
- 3. Not more than 15% passing through the No. 200 sieve.

If these requirements are not met, additional testing and evaluation may be necessary to determine the appropriate design parameters for foundations, pavement and other improvements.

<u>Subgrade Verification and Compaction Testing</u>: Fill soil compaction should be verified by means of in-place density tests performed during fill placement so that adequacy of soil compaction efforts may be evaluated as earthwork progresses, or by method specification if the quantity of rock fragments in the fills preclude traditional compaction testing. This will likely include the excavation of test pits within the fill materials to verify that a uniform over-optimum moisture condition, and absence of large and/or concentrated voids has been achieved prior to additional fill placement.

<u>Soil Moisture Considerations</u>: The near-surface fine grained soils may become partially or completely saturated during the rainy season. Grading operations during this time period may be difficult since compaction efforts may be hampered by saturated materials. It is, therefore, suggested that consideration be given to the seasonal limitations and costs of winter grading operations on the site.

#### 5.4 Slope Grading

<u>Placement of Fills on Slopes</u>: Placement of fill material on natural slopes should be stabilized by means of keyways and benches. Where the slope of the original ground equals or exceeds 5H:1V, a keyway should be constructed at the base of the fill. The keyway should consist of a trench excavated to a depth of at least two feet into firm, competent materials. The keyway trench should be at least eight feet wide or as designated by the Geotechnical Engineer. Benches should be cut into the original slope as the filling operation proceeds. Each bench should consist of a level surface excavated at least six feet horizontally into firm soils or four feet horizontally into rock. The rise between successive benches should not exceed 36 inches. The need for subdrainage should be evaluated at the time of consturction.

<u>Slope Face Compaction</u>: All slope fills should be laterally overbuilt and cut back such that the required compaction is achieved at the proposed finish slope face. As a less preferable alternative, the slope face could be tracked walked or compacted with a wheel. If this second alternative is used, additional slope maintenance may be necessary.

<u>Slope Drainage:</u> Surface drainage should not be allowed to flow uncontrolled over any slope face. Adequate surface drainage control should be designed by the project civil engineer in accordance with the latest applicable edition of the CBC. All slopes should have appropriate drainage and vegetation measures to minimize erosion of slope soils.

#### 5.5 Finish Soilgrade Preparation

Finish building pad soilgrades should be compacted to at least 90 percent of the maximum dry density as determined by ASTM D1557 test method. Pavement subgrades compacted to at least 95 percent of the maximum dry density as determined by ASTM D1557 test method and should be proof-rolled with a full water truck or equivalent immediately before paving, in order to verify their condition.

#### 5.6 Drainage Considerations

Special attention should be given regarding the drainage of the project site. If the project is expected to work through the wet season, the contractor should install appropriate temporary drainage systems at the construction site and should minimize traffic over exposed subgrades due to the moisture-sensitive nature of the on-site soils. If the project improvements are constructed prior to the wet season, but are not proposed to be fine graded for permanent drainage until the next dry season, temporary drainage or erosion protection provisions should be made to address the possibility of erosion to cut and fill slopes. During wet weather operations, the soil should be graded to drain and should be sealed by rubber tire rolling to minimize water infiltration.

All final grades should provide rapid removal of surface water runoff; ponding water should not be allowed adjacent to foundations or other structural improvements.

#### 5.7 Seismic Design Criteria

Based on the latest applicable edition of the California Building Code, Chapter 16, Division IV, and our site investigation findings, the following seismic parameters are recommended from a geotechnical perspective for structural design. The final choice of design parameters, however, remains the purview of the project structural engineer.

| CBC - CHAP. 16<br>TABLE NO. | SEISMIC PARAMETER                                             | RECOMMENDED<br>VALUE |  |  |
|-----------------------------|---------------------------------------------------------------|----------------------|--|--|
| 16-I                        | Seismic Zone Factor Z                                         | 0.30                 |  |  |
| 16-J                        | Soil Profile Type                                             | S <sub>B</sub>       |  |  |
| 16-Q                        | Seismic Coefficient ( $C_a$ )                                 | 0.30                 |  |  |
| 16-R                        | Seismic Coefficient ( $C_{\nu}$ )                             | 0.30                 |  |  |
| 16-S,-T                     | Near Source Factors ( <i>N<sub>a</sub></i> , N <sub>v</sub> ) | 1.0                  |  |  |
| 16-U                        | Seismic Source Type                                           | С                    |  |  |

#### 5.8 Foundations

In our opinion, continuous shallow footings or a thickened mat slab foundation will provide adequate support for the proposed structure. We offer the following comments and recommendations for purposes of footing design and construction.

<u>Footing Depths and Widths</u>: We anticipate that weathered bedrock will be encountered at the proposed foundation elevation for the structures. If continuous footings are used, we recommend that that they be embedded a minimum of 8 inches into weathered rock. The width of the footings should be based on the actual loads being supported. If a mat slab foundation is used, we recommend that a minimum of 6 inches of compacted aggregate base be placed beneath the slab in order to provide uniform support.

<u>Bearing Capacities</u>: For the above configurations, an allowable dead plus live load bearing pressure of 5,000 p.s.f. may be used for design of foundations based on weathered bedrock. A total settlement of less than ½ inch is anticipated. As indicated in Section 3.5 of this report, seismically induced settlement is anticipated to be negligible for foundations in weathered bedrock.

The above allowable pressures are for support of dead plus live loads and may be increased by one-third for short term wind and seismic loads.

<u>Subgrade Conditions</u>: Footings should never be cast atop soft, loose, organic, slough, debris, nor atop subgrades covered by ice or standing water. A representative of our firm should be retained to observe all subgrades before any concrete is poured in order to verify that they have been adequately prepared.

<u>Lateral Pressures</u>: Lateral forces on structures may be resisted by passive pressure acting against the sides of shallow footings and/or friction between the weathered rock and the bottom of the footing. For resistance to lateral loads, a friction factor of 0.40 may be utilized for sliding resistance at the base of spread footings in weathered bedrock. A passive resistance of 450 pcf equivalent fluid weight may be used against the side of shallow footings founded in weathered rock. If friction and passive pressures are combined, the lesser value should be reduced by 50%.

#### 5.10 Underground Facilities Construction

We offer the following comments and recommendations concerning underground facility construction.

<u>Trench Sidewalls</u>: Trenches or excavations in soil should be shored or sloped back in accordance with current OSHA regulations prior to persons entering them. Where clay rind in combination with moist conditions is encountered in fractured bedrock, the project engineering geologist should be consulted for appropriate mitigation measures. The potential use of a shield to protect workers cannot be precluded.

<u>Backfill Materials</u>: Backfill materials for utilities should conform to the local jurisdiction's requirements. It should be realized that permeable backfill materials will likely carry water at some time in the future. The need for drainage of some of these facilities may be necessary.

<u>Backfill Compaction</u>: All backfill, placed after the underground facilities have been installed, should be compacted to a minimum of 90 percent relative compaction. Compaction should be accomplished using lifts which do not exceed 12 inches. However, thickness of the lifts should be determined by the contractor. If the contractor can achieve the required compaction using thicker lifts, the method may be judged acceptable based on field verification by a representative of our firm using standard density testing procedures. Light weight compaction equipment may require thinner lifts to achieve the required densities.

<u>Excavation</u>: Utility trenches may encounter isolated hard rock excavation conditions in deeper cut areas. Utility contractors should be prepared to use large excavators such as a CAT 235 or CAT 245. Blasting will most likely not be required, but cannot be precluded. Water inflow into any excavation approaching hard rock surface may be experienced in all but the driest summer and fall months.

#### 5.11 Retaining Walls

Our design recommendations and comments regarding retaining walls for the project site are discussed below.

<u>Retaining Wall Foundations:</u> The allowable bearing pressure, depth of foundation, lateral pressure and friction coefficient should be as given in the "Foundations" section of this report. All backfill placed behind retaining walls or against retaining wall footings should be compacted in accordance with the "Engineered Fill" section of this report.

<u>Retaining Wall Lateral Pressures:</u> Based on our observations and testing, retaining walls should be designed to resist lateral pressure exerted from a soil media having an equivalent fluid weight as follows (assumes gravelly on site material will be used for backfilling walls).

| Wall Type    | Wall Slope<br>Configuration | Equivalent Fluid<br>Weight (pcf) | Surcharge<br>Load (psf)* | Lateral<br>Pressure<br>Coefficient |
|--------------|-----------------------------|----------------------------------|--------------------------|------------------------------------|
| Free         | Flat                        | Flat 35 per structural           |                          | 0.24                               |
| Cantilever   | 2H:1V                       | 50                               | NA                       | NA                                 |
| Restrained** | Flat                        | 55                               | per structural           | 0.38                               |

\* The surcharge loads should be applied as uniform loads over the full height of the walls as follows: Surcharge Load (psf) = (q) (K), where q = surcharge in psf, and K = coefficient of lateral pressure. Final design is the purview of the project structural engineer.

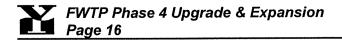
\*\* Restrained conditions shall be defined as walls which are not capable of yielding, or rigid wall configurations (i.e. walls with numerous turning points) which prevent the yielding necessary to generate active pressures.

Wall Drainage: The proposed improvements are tanks and basins which, when filled with water are expected to equalize any hydrostatic pressure which may develop on the outside of the structures. The decision whether or not to provide drainage for the wall, as well as drainage system design, is the purview of the project structural engineer; however, it should be noted that the pressures listed in the above table are based on drained conditions. If a drain is considered necessary, it should consist of, at a minimum, a blanket of filter material 12 inches thick extending from the bottom of the wall to within 12 inches of the ground surface. The filter material should conform to Class One, Type B permeable material as specified in Section 68 of the California Department of Transportation Standard Specifications, current edition. A typical 1"x#4 concrete coarse aggregate mix approximates this specification. A clean pea gravel or crushed rock is also acceptable, provided filter fabric is used to separate the open graded gravel/rock from the surrounding soils. The top 12 inches of wall backfill should consist of a compacted native soil cap. A filter fabric should be placed on top of the gravel filter material to separate it from the native soil cap. A 4 inch diameter drain pipe should be installed near the bottom of the filter blanket with perforations facing down. The drain pipe should be underlain by at least 4 inches of filter-type material. As an alternative to drain pipe, where deemed appropriate, weep holes may be provided. Adequate gradients should be provided to discharge water that collects behind the retaining wall to an controlled discharge system.

#### 6.0 LIMITATIONS AND UNIFORMITY OF CONDITIONS

- 1. This report has been prepared for the exclusive use of Malcolm Pirnie for specific application to the Folsom Water Treatment Plant Phase 4 project. Youngdahl Consulting Group, Inc. has endeavored to comply with generally accepted geotechnical engineering practice common to the local area. Youngdahl Consulting Group, Inc. makes no other warranty, express or implied.
- 2. As of the present date, the findings of this report are valid for the property studied. With the passage of time, changes in the conditions of a property can occur whether they be due to natural processes or to the works of man on this or adjacent properties. Legislation or the broadening of knowledge may result in changes in applicable standards. Changes outside of our control may cause this report to be invalid, wholly or partially. Therefore, this report should not be relied upon after a period of three years without our review nor should it be used or is it applicable for any properties other than those studied.
- 3. Section 3317.8 in Appendix Chapter 33 of the latest edition of the California Building Code is applicable to this report. This section states that, in regard to the transfer of responsibility, if the Geotechnical Engineer of Record for the project site is not maintained into and through the grading phase of the project, the work shall be stopped until the replacement has agreed in writing to accept their responsibility within the area of technical competence for approval upon completion of the work.

WARNING: Do not apply any of this report's conclusions or recommendations if the nature, design, or location of the facilities is changed. If changes are contemplated, Youngdahl Consulting Group, Inc. must review them to assess their impact on this report's applicability. Also note that Youngdahl Consulting Group, Inc. is not responsible for any claims, damages, or liability associated with any other party's interpretation of this report's subsurface data or reuse of this report's subsurface data or engineering analyses without the express written authorization of Youngdahl Consulting Group, Inc.


- 4. The analyses and recommendations contained in this report are based on limited windows into the subsurface conditions and data obtained from subsurface exploration. The methods used indicate subsurface conditions only at the specific locations where samples were obtained, only at the time they were obtained, and only to the depths penetrated. Samples cannot be relied on to accurately reflect the strata variations that usually exist between sampling locations. Should any variations or undesirable conditions be encountered during the development of the site, Youngdahl Consulting Group, Inc., will provide supplemental recommendations as dictated by the field conditions.
- 5. The recommendations included in this report have been based in part on assumptions about strata variations that may be tested only during earthwork. Accordingly, these recommendations should not be applied in the field unless Youngdahl Consulting Group, Inc. is retained to perform construction observation and thereby provide a complete professional geotechnical engineering service through the observational method. Youngdahl Consulting Group, Inc. cannot assume responsibility or liability for the adequacy of its recommendations when they are used in the field without Youngdahl Consulting Group, Inc. being retained to observe construction. Unforseen subsurface conditions containing soft native soils, loose or previously placed non-engineered fills should be a consideration while preparing for the grading of the property. It should be noted that it is the responsibility of the owner or his/her representative to notify Youngdahl Consulting Group, Inc., in writing, a minimum of 48 hours before any excavations commence.

|     | CHECKLIST OF RECOMMENDED SERVICES                                                                                                      |             |                    |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|--|--|--|--|--|--|
|     | Item Description                                                                                                                       | Recommended | Not<br>Anticipated |  |  |  |  |  |  |
| 1   | Provide foundation design parameters                                                                                                   | Included    |                    |  |  |  |  |  |  |
| 2   | Review grading plans and specifications                                                                                                | <i>✓</i>    |                    |  |  |  |  |  |  |
| 3   | Review foundation plans and specifications                                                                                             | <i>✓</i>    |                    |  |  |  |  |  |  |
| 4   | Observe and provide recommendations regarding demolition                                                                               |             | <i>✓</i>           |  |  |  |  |  |  |
| 5   | Observe and provide recommendations regarding site stripping                                                                           |             |                    |  |  |  |  |  |  |
| 6   | Observe and provide recommendations on moisture conditioning removal, and/or precompaction of unsuitable existing soils                | <i>✓</i>    |                    |  |  |  |  |  |  |
| 7   | Observe and provide recommendations on the installation of subdrain facilities                                                         | <i>✓</i>    |                    |  |  |  |  |  |  |
| 8   | Observe and provide testing services on fill areas and/or imported fill materials                                                      | 1           |                    |  |  |  |  |  |  |
| 9   | Review as-graded plans and provide additional foundation recommendations, if necessary                                                 | ~           |                    |  |  |  |  |  |  |
| 10  | Observe and provide compaction tests on storm drains, water lines and utility trenches                                                 | 1           |                    |  |  |  |  |  |  |
| 11  | Observe foundation excavations and provide supplemental recommendations, if necessary, prior to placing concrete                       | J           |                    |  |  |  |  |  |  |
| 12  | Observe and provide moisture conditioning<br>recommendations for foundation areas and slab-on-grade<br>areas prior to placing concrete | 1           |                    |  |  |  |  |  |  |
| 13  | Provide design parameters for retaining walls                                                                                          | Included    |                    |  |  |  |  |  |  |
| .14 | Provide finish grading and drainage recommendations                                                                                    | Included    |                    |  |  |  |  |  |  |
| 15  | Provide geologic observations and recommendations for keyway excavations and cut slopes during grading                                 | 1           |                    |  |  |  |  |  |  |
| 16  | Excavate and recompact all test pits within structural areas                                                                           |             | 1                  |  |  |  |  |  |  |

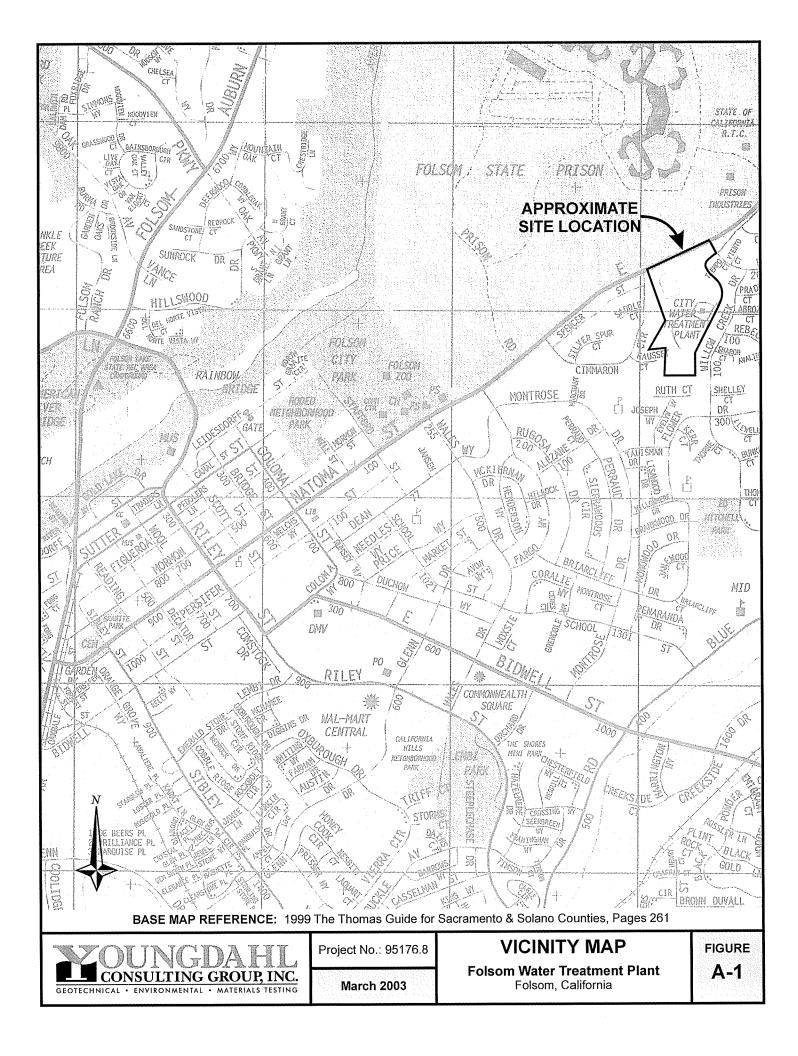
#### APPENDIX A

#### Field Study

<u>Vicinity Map</u> <u>Site Plan</u> Logs of Exploratory Borings



#### Introduction


The contents of this appendix shall be integrated with the geotechnical engineering study of which it is a part. They shall not be used in whole or in part as a sole source for information or recommendations regarding the subject site.

#### Field study

Our field study included a site reconnaissance by a Youngdahl Consulting Group, Inc., representative followed by a subsurface exploration program conducted on 17 March 2003, which included the drilling of 3 exploratory borings under his direction at the approximate locations shown on Figure A-2, this Appendix. Drilling of the exploratory borings was accomplished with a CME 850 track mounted drill rig.

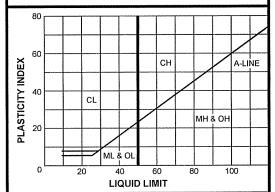
Throughout the drilling operation, soil samples were obtained at 5-foot depth intervals by means of a Modified California Sampler. This testing and sampling procedure consists of driving the steel sampler 18 inches into the soil with a 140-pound hammer free-falling 30 inches. The number of blows required to drive the sampler through each 6-inch interval is counted, and the total number of blows struck during the final 12 inches is recorded. If a total of 50 blows is struck within any 6-inch interval, the driving is stopped and the blow count is recorded as 50 blows for the actual penetration distance.

The soils encountered were logged during drilling and provide the basis for the "Boring Logs", Figures A-3 through A-5, this Appendix. The enclosed Boring Logs describe the vertical sequence of soils and materials encountered in each boring, based primarily on our field classifications and supported by our subsequent laboratory examination and testing. Where a soil contact was observed to be gradational, our logs indicate the average contact depth. Where a soil type changed between sample intervals, we inferred the contact depth. Our logs also graphically indicate the blow count, sample type, sample number, and approximate depth of each soil sample obtained from the borings, as well as any laboratory tests performed on these soil samples. If any groundwater was encountered in a borehole, the approximate groundwater depth is depicted on the boring log. Groundwater depth estimates are typically based on the moisture content of soil samples, the wetted height on the drilling rods, and the water level measured in the borehole after the auger has been extracted.





| Logged By: RFB                                               |              |                                           | Date: 17 Ma                             | rch 2003                                                                      | Elevatio                                                                                    | n: ur               | known                     |                      |                         |                | Boring No.     |
|--------------------------------------------------------------|--------------|-------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------------|-------------------------|----------------|----------------|
| Equipment:                                                   | CME          | 850 with 6"                               | Solid Flight                            |                                                                               |                                                                                             |                     |                           |                      |                         |                | B-1            |
| Depth (Feet)<br>Graphic Log                                  | Ground Water |                                           | Geotechnica<br>& Unified Soil           | l Description<br>Classification                                               |                                                                                             | Sample              | Blow Count                | Dry Density<br>(pcf) | Moisture<br>Content (%) | Tests &        | Comments       |
|                                                              |              | stiff, moist<br>Gray browr<br>highly weat |                                         |                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                     | . 33                      |                      |                         | Hard D         | Prilling       |
| 12<br>13<br>14<br>15<br>16<br>16<br>17<br>18<br>19<br>20<br> |              | Boring tern<br>No ground                  | ninated at 12' (<br>water encounte      | due to practical re<br>ered                                                   | fusal) -                                                                                    |                     |                           |                      |                         |                |                |
| levels, at oth                                               | ner loca     | ations of the subj                        | ect site may differ                     | only at the specific loc<br>significantly from conc<br>of time may affect cor | ditions which<br>aditions at the                                                            | n, in the<br>ne sam | e opinion o<br>pling loca | of Youngd<br>tions.  | lahl Cons               | ulting Grou    | p, Inc., exist |
|                                                              |              | NGD<br>JLTING GE<br>VIRONMENTAL • M       | A HIL<br>ROUP, INC.<br>ATERIALS TESTING | Project No.: 95176<br>March 2002                                              |                                                                                             |                     | om Wate                   |                      | ment F                  | G LOG<br>Plant | FIGURE<br>A-3  |


| Logged By: RFB                                           |              |                                          | Date: 17 Mar                                          | rch 2003                                                                    | Elevatio                          | n: ur     | known      |                      |                         |                             | Boring No.                   |
|----------------------------------------------------------|--------------|------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|-----------|------------|----------------------|-------------------------|-----------------------------|------------------------------|
| Equipment:                                               | CME          | 850 with 6"                              | Solid Flight                                          |                                                                             |                                   |           |            |                      |                         |                             | B-2                          |
| Depth (Feet)<br>Graphic Log                              | Ground Water |                                          | Geotechnical<br>& Unified Soil                        | Description<br>Classification                                               |                                   | Sample    | Blow Count | Dry Density<br>(pcf) | Moisture<br>Content (%) | Tests &                     | Comments                     |
|                                                          |              | rock fragmo<br>(completel)<br>Gray metav | ents, medium o<br>y weathered roo                     | ck)<br>                                                                     | -<br>-<br>-<br>-                  |           | . 35       |                      |                         | Very H                      | ard Drilling                 |
| 8 -<br>9 -<br>10 -<br>11 -<br>11 -                       |              | Boring tern                              | oderately weath<br>ninated at 10' (<br>water encounte | due to practical re                                                         | -<br>-<br>-<br>-<br>fusal) -<br>- |           |            |                      |                         |                             |                              |
| 12 -<br>-<br>13 -<br>14 -<br>14 -<br>15 -                |              |                                          |                                                       |                                                                             | -                                 |           |            |                      |                         |                             |                              |
| 16 -<br>-<br>17 -<br>-<br>18 -<br>-<br>19 -<br>-<br>20 - |              |                                          |                                                       |                                                                             | -                                 |           |            |                      |                         |                             |                              |
| levels, at ot                                            | her loca     | ations of the sub                        | iect site may differ                                  | only at the specific loo<br>significantly from con<br>of time may affect co | ditions whicl                     | h, in the | e opinion  | of Youngo            | ditions, i<br>dahl Cons | ncluding gr<br>sulting Grou | oundwater<br>ıp, Inc., exist |
|                                                          | )U<br>onsi   | NGD                                      | AHL<br>ROUP, INC.                                     | Project No.: 9517<br>March 2002                                             | 6.8 <b>EX</b>                     | PLC       | RATO       | RY B                 | tment F                 | G LOG<br>Plant              | FIGURE<br>A-4                |

| Logged By:                                            | RFB          |                                                                          | Date: 17 Ma                                                                                             | 7 March 2003 Elevation: unknown                                                                 |        |        |            | Boring No.           |                         |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------|--------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------|--------|------------|----------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment                                             | CME          | 850 with 6"                                                              | Solid Flight                                                                                            |                                                                                                 |        |        |            |                      |                         |                                                                                                                                                                                                         | B-3                                                                                                                                                                                                                                                                                       |
| Depth (Feet)<br>Graphic Log                           | Ground Water |                                                                          | Geotechnica<br>& Unified Soil                                                                           | I Description<br>Classification                                                                 |        | Sample | Blow Count | Dry Density<br>(pcf) | Moisture<br>Content (%) | Tests &                                                                                                                                                                                                 | Comments                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |              | Brown <b>SIL</b><br>dense, dan<br>Gray metay<br>weathered,<br>moderately | T (ML) with sar<br>(ML) with sar<br>(NATIVE)<br>volcanic <b>BEDR</b><br>closely fractur<br>strong, damp | EL (GM) with san<br>dense, moist (FILI<br>nd and gravel, me<br>ROCK, completely<br>red, weak to |        |        | 33         |                      |                         | Note: The<br>indicates<br>conditions<br>specific<br>time note<br>conditions<br>groundwa<br>other loc<br>subject s<br>s i g n i fi c<br>conditions<br>opinion of<br>Consulting<br>exist at<br>locations. | e boring log<br>subsurface<br>conly at the<br>location and<br>d. Subsurface<br>s, including<br>ter levels, at<br>ations of the<br>ite may differ<br>antly from<br>swhich, in the<br>of Youngdahl<br>g Group, Inc.,<br>the sampling<br>Note, too, that<br>ge of time may<br>didions at the |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |              | Boring term                                                              | ninated at 25'<br>water encounte                                                                        |                                                                                                 |        |        |            |                      |                         | Hard I                                                                                                                                                                                                  | I                                                                                                                                                                                                                                                                                         |
|                                                       |              | ULTING GH                                                                |                                                                                                         | Project No.: 9517<br>March 2002                                                                 | 6.8 E) |        | m Wate     |                      | ment P                  | G LOG<br>Plant                                                                                                                                                                                          | FIGURE<br>A-5                                                                                                                                                                                                                                                                             |

|                                        | IINII                                 |                                    | CI | ASS                       | IFICATION SYSTEMS                                                                           |
|----------------------------------------|---------------------------------------|------------------------------------|----|---------------------------|---------------------------------------------------------------------------------------------|
|                                        |                                       |                                    |    | BOLS                      | TYPICAL NAMES                                                                               |
|                                        | eve                                   | Clean GRAVELS                      | GW |                           | Well graded GRAVELS, GRAVEL-SAND mixtures                                                   |
| Ś                                      | <b>GRAVELS</b><br>Over 50% > #4 sieve | With Little<br>Or No Fines         | GP |                           | Poorly graded GRAVELS, GRAVEL-SAND mixtures                                                 |
| SOILS<br>sieve                         | <b>GRAVELS</b><br>r 50% > #4          | GRAVELS With                       | GM |                           | Silty GRAVELS, poorly graded GRAVEL-SAND-<br>SILT mixtures                                  |
| <b>GRAINED SOII</b><br>1% > #200 sieve | Ove                                   | Over 12% Fines                     | GC |                           | Clayey GRAVELS, poorly graded GRAVEL-SAND-<br>CLAY mixtures                                 |
| Over 50% >                             | eve                                   | Clean SANDS<br>With Little         | SW |                           | Well graded SANDS, gravelly SANDS                                                           |
| COARSE<br>Over 50                      | SANDS<br>Dver 50% < #4 sieve          | Or No Fines                        | SP |                           | Poorly graded SANDS, gravelly SANDS                                                         |
| ບິ                                     | <b>SANDS</b><br>r 50% < #⁄            | SANDS With                         | SM |                           | Silty SANDS, poorly graded SAND-SILT mixtures                                               |
|                                        | Ove                                   | Over 12% Fines                     | SC | $\langle \rangle \rangle$ | Clayey SANDS, poorly graded SAND-CLAY<br>mixtures                                           |
|                                        |                                       |                                    | ML |                           | Inorganic SILTS, silty or clayey fine SANDS, or<br>clayey SILTS with plasticity             |
| IED SOILS<br>#200 sieve                |                                       | SILTS & CLAYS<br>Liquid Limit < 50 |    |                           | Inorganic CLAYS of low to medium plasticity,<br>gravelly, sandy, or silty CLAYS, lean CLAYS |
|                                        |                                       |                                    | OL |                           | Organic CLAYS and organic silty CLAYS of low<br>plasticity                                  |
| <b>GRAINED</b><br>50% < #20            |                                       |                                    | мн |                           | Inorganic SILTS, micaceous or diamacious fine<br>sandy or silty soils, elastic SILTS        |
| FINE Over 5                            |                                       | SILTS & CLAYS<br>Liquid Limit > 50 |    |                           | Inorganic CLAYS of high plasticity, fat CLAYS                                               |
|                                        |                                       |                                    | ОН |                           | Organic CLAYS of medium to high plasticity,<br>organic SILTS                                |
| HIG                                    | HLY OR                                | GANIC CLAYS                        | PT |                           | PEAT & other highly organic soils                                                           |



USED FOR CLASSIFICATION OF FINE GRAINED SOILS



| SAM | PLE | DRI\ | /IN | GR | EC | OR | D |
|-----|-----|------|-----|----|----|----|---|

| BLOWS P<br>FOOT           | ER DESCRIPTION                                                                                        |
|---------------------------|-------------------------------------------------------------------------------------------------------|
| 25                        | 25 Blows drove sampler 12 inches, after initial 6 inches of seating                                   |
| 50/7"                     | 50 Blows drove sampler 7 inches,<br>after initial 6 inches of seating                                 |
| 50/3"                     | 50 Blows drove sampler 3 inches<br>during or after initial 6 inches of seating                        |
| Note: To a<br>to 50 blows | void damage to sampling tools, driving is limited<br>s per 6 inches during or after seating interval. |

#### SOIL GRAIN SIZE

| U.S. STAND         | ARD SIEVE      | 6"     | 3" | 3/4'   | ,    | 4      | 10     | 40   | 200  | )     |      |
|--------------------|----------------|--------|----|--------|------|--------|--------|------|------|-------|------|
|                    |                |        |    | GRAVEL |      | SAND   |        |      |      | 011 T |      |
|                    | BOULDER        | COBBLE | с  | OARSE  | FINE | COARSE | MEDIUM | FINE |      | SILT  | CLAY |
| SOIL<br>GRAIN SIZE | IN MILLIMETERS | 150    | 75 | 19     | 4.   | .75    | 2.0 .  | 425  | 0.07 | 5 0.0 | 02   |

|                      | KEY TO TEST DATA                      |      | KEY TO TEST DATA                    |
|----------------------|---------------------------------------|------|-------------------------------------|
|                      | Standard Penetration test             | م    | Water Seepage                       |
| $\square$            | 2.5" O.D. Modified California Sampler | OMD  | Moisture Density Test               |
| m                    | 3" O.D. Modified California Sampler   | NFWE | No Free Water Encountered           |
| Ш                    |                                       | FWE  | Free Water Encountered              |
|                      | Shelby Tube Sampler                   | REF  | Sampling Refusal                    |
|                      |                                       | DD   | Dry Density (pcf)                   |
| 0                    | 2.5" Hand Driven Liner                | МС   | Moisture Content (%)                |
| R                    | Dully Comple                          | LL   | Liquid Limit                        |
| $\bigcirc$           | Bulk Sample                           | PI   | Plasticity Index                    |
| $\underline{\nabla}$ | Water Level At Time Of Drilling       | PP   | Pocket Penetrometer                 |
|                      |                                       | UCC  | Unconfined Compression (ASTM D2166) |
| <b>_</b>             | Water Level After Time Of Drilling    | TVS  | Pocket Torvane Shear                |
| P                    |                                       | EI   | Expansion Index (ASTM D4829)        |
| ₽<br>₽               | Perched Water                         | Su   | Undrained Shear Strength            |
|                      |                                       | 1    |                                     |



Project No.: 95176.8

March 2002

SOIL CLASSIFICATION CHART & LOG EXPLANATION Folsom Water Treatment Plant Folsom, California

FIGURE

A-6

#### APPENDIX B

#### Laboratory Testing

<u>Sieve Analysis</u> Modified Proctor Test

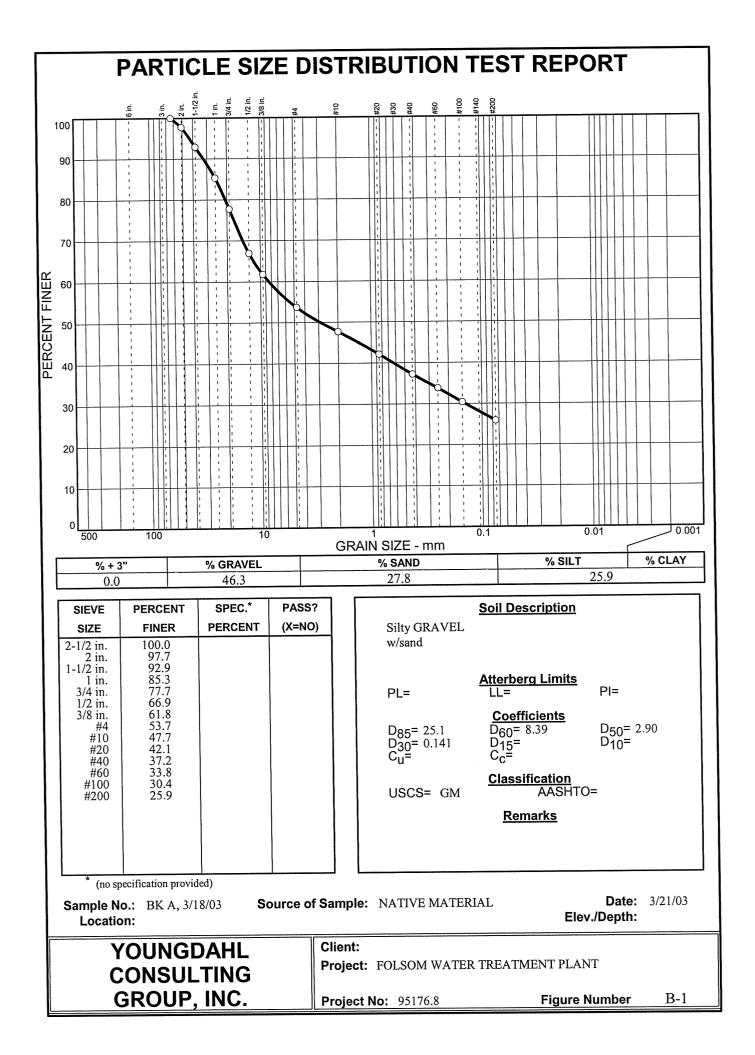


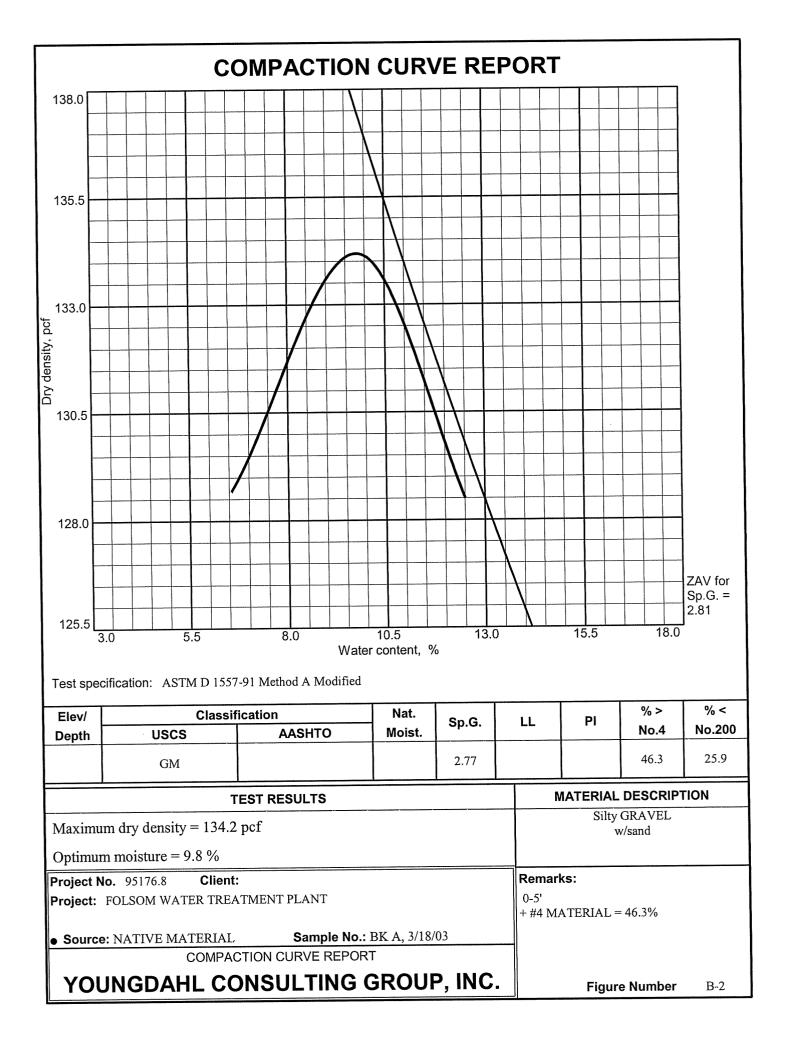
#### **Introduction**

Our laboratory testing program for this evaluation included numerous visual classifications, Sieve Analysis, and Modified Proctor tests. The following paragraphs describe our procedures associated with each type of test. Graphical results of certain laboratory tests are enclosed in this appendix. The contents of this appendix shall be integrated with the geotechnical engineering study of which it is a part. They shall not be used in whole or in part as a sole source for information or recommendations regarding the subject site.

#### Laboratory Testing

#### Visual Classification Procedures


Visual soil classifications were conducted on all samples in the field and on selected samples in our laboratory. All soils were classified in general accordance with the United Soil Classification System, which includes color, relative moisture content, primary soil type (based on grain size), and any accessory soil types. The resulting soil classifications are presented on the exploration logs in Appendix A.


#### Grain Size Analysis

A grain size analysis indicates the range of soil particle diameters included in a particular sample. Grain size analyses were performed on representative samples in general accordance with ASTM:D-422. The results of these tests are presented on Figure B-1, this Appendix.

#### Maximum Dry Density Determination Procedures

A modified Proctor Test (ASTM D1557-91A) was conducted to provide the optimum moisture and maximum dry density on the near surface material. The results of this test is presented on Figure B-2, this Appendix.



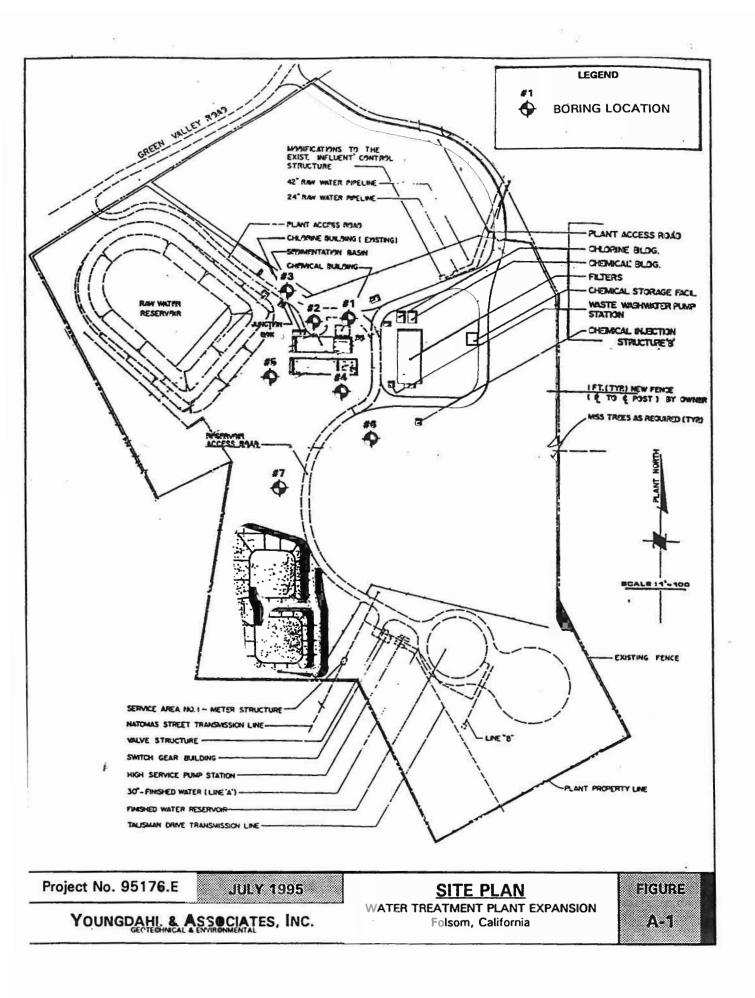


#### APPENDIX C

<u>Refraction Seismic Rippability/Excavatibility</u> <u>& Seismic Shear Wave Investigation (Gasch & Associates)</u>

## APPENDIX A Field Study Site Plan Logs of Borings

### Project No. 95176.E 25 July 1995


#### Introduction

The contents of this appendix shall be integrated with the geotechnical engineering study of which it is a part. They shall not be used in whole or in part as a sole source for information or recommendations regarding the subject site.

#### Field study


Our field study included a site reconnaissance by a *Youngdahl & Associates, Inc.*, representative followed by a subsurface exploration program conducted on 28 June 1995, which included the drilling and logging of 7 borings under his direction at the approximate locations shown on Figure A-1, this Appendix. Drilling of the borings was accomplished with a B53 truck-mounted drill rig equipped with a 4 inch diameter solid stem auger. As the drilling proceeded, relatively undisturbed soil samples were collected using a 2.5 inch 0.D. split-tube sampler containing 2.0 inch 0.D. brass liners. The sampler was advanced into the soil at various depths under impact of a 140 pound hammer falling 30 inches. The number of blows required to advance the sampler a measured distance of 12 inches into the soil, after seating the sampler 6 inches, was adjusted to the corresponding standard penetration resistance (N) value. The samples collected from the borings were sealed and returned to our laboratory for testing.

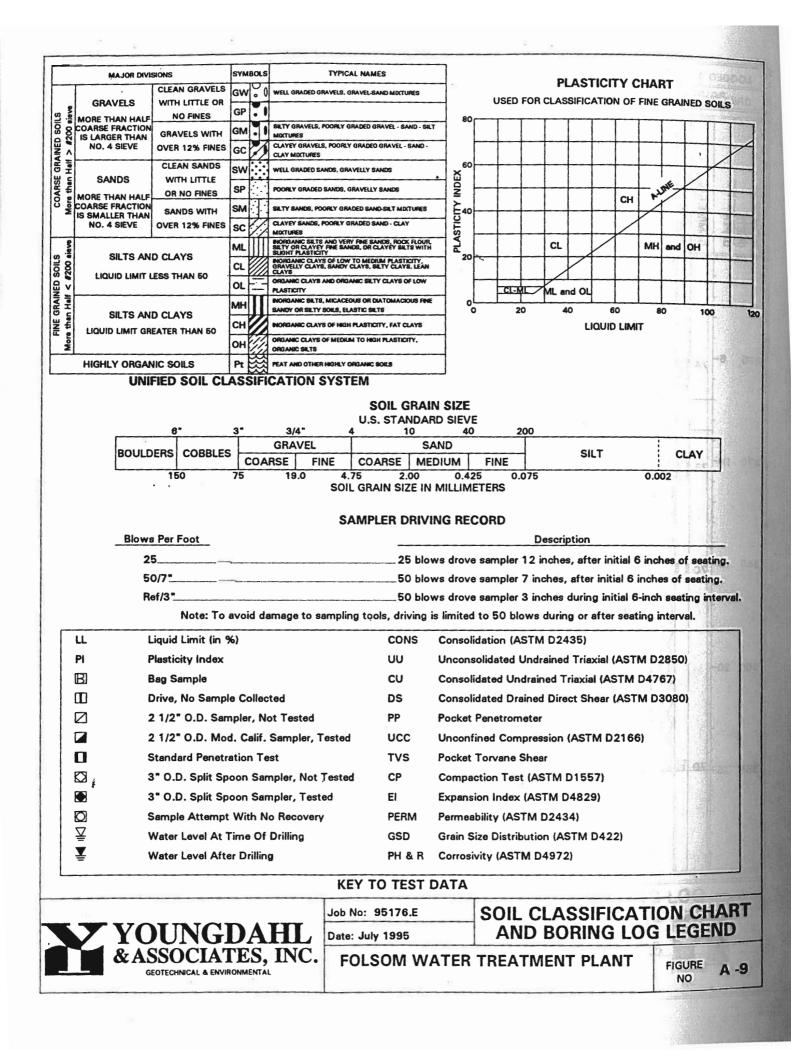
The soils encountered were logged during drilling and provide the basis for the "Logs of Borings", Figures A-2 through A-8, this Appendix. These logs show a graphic representation of the soil profile, the location and depths at which samples were collected and the laboratory test results.



| LOGGE                        | _          |        | JN<br>Iot   | ile B-53                                                                                                                                             |            | CE ELEVATION                   | 4    | -inch               |                                        | g no. 1<br>Drillei   |                               | 6/28                           | /95                 |
|------------------------------|------------|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|------|---------------------|----------------------------------------|----------------------|-------------------------------|--------------------------------|---------------------|
| ELEVATION<br>(FEET)<br>DEPTH | SAMPLE NO. | SAMPLE | GRAPHIC LOG | GEOTECHNICA<br>A<br>CLASSI                                                                                                                           | ND         |                                |      | SOIL CLASSIFICATION | CONVERTED SPT BLOW<br>COUNT (BLOWS/FT) | DRY DENSITY<br>(PCF) | MOISTURE CONTENT<br>(PERCENT) | PERCENT RELATIVE<br>COMPACTION | ADDITIONAL<br>TESTS |
| 390 -<br>5-                  | 14         |        |             | Light brown fine sandy SILT<br>medium dense, with some<br>Medium dense<br>Slightly clayey, with grave                                                | e gravel a | nd cobbles (FILL               |      | ML                  | 7                                      | 116.3                | 18.7                          |                                | BAG                 |
| 385 -<br>10-<br>-            | 18         | N      |             | Moist                                                                                                                                                |            |                                |      |                     | 7                                      |                      |                               |                                | BAG                 |
| 15-<br>15-                   |            |        |             | Light brown to gray-brown si<br>moist, medium dense, diff<br>Light brown and brown fine<br>medium stiff to stiff, with<br>(NATIVE)<br>Hole sloughing | sandy SI   | ing (FILL)<br>LT - very moist, |      | GN<br>MI            |                                        |                      | 4                             |                                |                     |
| 375 -<br>20-                 | 10         |        |             | Grading wet<br>Brown and gray-brown and g<br>- damp, weathered, hard,<br>seams                                                                       |            |                                |      |                     | 52/6"                                  |                      | 14.0                          |                                |                     |
| 370 -<br>25-                 |            |        |             |                                                                                                                                                      |            |                                |      |                     | 2                                      |                      |                               |                                |                     |
| <b>4</b> 25-                 |            |        |             | Boring terminated at 25 ft;<br>Perched water level at 16 fee                                                                                         | et follow  | ing drilling.                  |      |                     |                                        |                      |                               |                                |                     |
| 365                          |            |        |             |                                                                                                                                                      |            |                                |      |                     |                                        |                      |                               |                                |                     |
|                              | -          |        | 1           | s († 7                                                                                                                                               |            | EX                             | PLO  | RATO                | RY B                                   | ORI                  | IG I                          | LOG                            | 1                   |
|                              |            | Ζ      |             | YOUNGDAHL<br>& ASSOCIATES, INC                                                                                                                       | 4          | FOLS                           | OM V | VATER               | TRE                                    | ATME                 | NT                            | PLA                            | NT                  |
| _                            |            | _      |             | GEOTECHNICAL & ENVIRONMENTAL                                                                                                                         | -          | PROJECT NO                     |      |                     | DATE                                   |                      |                               | FIGUR                          | <sup>Е</sup> А-     |

| LOGGED BY JM                                                       | SUI                                                                                              | RFACE ELEVATION 393    | .0 -fee | t                   | BORIN                                  | G NO.                | 2                             |                                |                     |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------|---------|---------------------|----------------------------------------|----------------------|-------------------------------|--------------------------------|---------------------|
| DRILL RIG Mobile B-53                                              | BOI                                                                                              | RING DIAMETER 4        | -incl   | r                   | DATE                                   | DRILLEI              | D                             | 6/28/9                         | 95                  |
| ELEVATION<br>(FEET)<br>DEPTH<br>SAMPLE NO<br>SAMPLE<br>GRAPHIC LOG | GEOTECHNICAL D<br>AND<br>CLASSIFICA                                                              | •                      |         | SOIL CLASSIFICATION | CONVERTED SPT BLOW<br>COUNT (BLOWS/FT) | DRY DENSITY<br>(PCF) | MOISTURE CONTENT<br>(PERCENT) | PERCENT RELATIVE<br>COMPACTION | ADDITIONAL<br>TESTS |
| Ma                                                                 | ght brown silty CLAY with grav<br>ottled brown silty SAND with g<br>dense (NATIVE)               | -                      | }∝<br>  | CL<br>SM            | -                                      |                      |                               |                                |                     |
| 5-<br>2A<br>2B                                                     | own and gray-brown and gray (<br>- moist to damp, weathered, m<br>occasional silt and sand seams | oderately hard, with   | s       |                     | 72                                     | 123.5                | 8.5                           |                                |                     |
| 10-2C<br>2D                                                        |                                                                                                  |                        |         |                     | 65                                     | 108.3                | 11.6                          | 8                              | ÷                   |
|                                                                    | Hard drilling                                                                                    |                        |         |                     |                                        |                      |                               |                                |                     |
| 20-<br>20-<br>20-<br>20-<br>20-<br>20-<br>20-<br>20-<br>20-<br>20- | een to gray to gray-brown                                                                        |                        |         |                     |                                        |                      | 16.6                          |                                |                     |
|                                                                    | een with rusty mottles, comple<br>clayey nodules, crumbles easily                                |                        | h       |                     | 66                                     |                      | 20.8                          |                                |                     |
|                                                                    | ring hole terminated at 26.5 fe<br>rched water level at 18.5 feet f                              |                        |         |                     |                                        |                      |                               | 0                              |                     |
|                                                                    |                                                                                                  | EXPLO                  | RAT     | OR                  | Y B                                    | ORIN                 | IGL                           | .OĠ                            |                     |
| YOU & ASS                                                          | JNGDAHL<br>OCIATES, INC.                                                                         | FOLSOM                 | WAT     | ER                  | TREA                                   | TME                  | NT I                          | PLAN                           | T                   |
|                                                                    | CHNICAL & ENVIRONMENTAL                                                                          | PROJECT NO.<br>95176.E |         |                     | OATE<br>1995                           | ;                    |                               | IGURE<br>NO                    | A -3                |




|                 |       | DB         |        | JM                                     |                                                                                        |                           | ACE ELEVATION    |      |                     |                                        | IG NO.               |                               |                                | CEOEC      |
|-----------------|-------|------------|--------|----------------------------------------|----------------------------------------------------------------------------------------|---------------------------|------------------|------|---------------------|----------------------------------------|----------------------|-------------------------------|--------------------------------|------------|
| DR              | RILL  | RIG        | 1      | Nobil                                  | e B-53                                                                                 | BORIN                     | IG DIAMETER      | 4    | -inch               | DATE                                   | DRILLE               | D                             | 6/28                           | 95         |
| (FEET)          | DEPTH | SAMPLE NO. | SAMPLE | GRAPHIC LOG                            | GEOTECHNI<br>CLAS                                                                      | CAL DE:<br>AND<br>SIFICAT | ,                |      | SOIL CLASSIFICATION | CONVERTED SPT BLOW<br>COUNT (BLOWS/FT) | DRY DENSITY<br>(PCF) | MOISTURE CONTENT<br>(PERCENT) | PERCENT RELATIVE<br>COMPACTION | ADDITIONAL |
| 90              |       |            | T      | 11                                     | Brown silty sandy GRAVE                                                                | L - damp,                 | dense (FILL)     | *.   | GN                  | 1                                      |                      | 1                             |                                | 1          |
| 85              | 5     |            | C      | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | With some cobbles                                                                      |                           |                  |      |                     | 90                                     |                      | 11.5                          |                                | ē          |
|                 |       | +-         | +      |                                        | Olive brown clayey silty SAN                                                           | ND - moist                | t. medium dense  |      |                     | -                                      |                      |                               |                                |            |
| ) <sup>10</sup> | 0 2   | - B        |        |                                        |                                                                                        | ĸ                         | s                |      | \$M                 | 30 1                                   | 01.7 1               | 3.3                           | В/                             | G.         |
| 15              | 4     |            | N      |                                        | Olive-brown and brown Copp<br>completely weathered, mo<br>silt and sand lenses and cla | derately h                | ard, with numero | ous  |                     | 5 r<br>0/5 i                           | <b>n</b> .           |                               | BA                             | G          |
| 20              | 40    |            |        |                                        |                                                                                        |                           |                  |      |                     | 18                                     |                      |                               | BA                             | - (19      |
|                 |       |            |        | \<br>\<br>\                            |                                                                                        |                           |                  |      |                     |                                        |                      |                               | h.,                            |            |
| 25              | 1     |            | ŀ      | 0.1.                                   | Boring hole terminated at 25.<br>Perched water level at 23.0 f                         |                           |                  |      |                     |                                        |                      |                               |                                | 100<br>    |
|                 |       | -          |        |                                        |                                                                                        |                           |                  |      |                     |                                        |                      |                               |                                |            |
|                 |       |            |        |                                        |                                                                                        |                           | EXPLO            | ORAT | ORY                 | BOR                                    | ING                  | LOC                           |                                |            |
|                 | Y     |            |        |                                        | UNGDAHL<br>SOCIATES, INC.                                                              |                           | FOLSOM           |      |                     |                                        |                      |                               | i di                           | CU.        |
| _               |       |            |        |                                        | DTECHNICAL & ENVIRONMENTAL                                                             |                           | ROJECT NO        |      |                     | E                                      |                      | CIAL I                        | E Prie                         | EA.        |
|                 |       |            |        | AS                                     |                                                                                        | 1 A.                      |                  |      |                     |                                        |                      |                               | PLA                            |            |

| LOGGED                       | BY JM                               | CORDINEC :                                                                                    | SURFACI                       | ELEVATION                      | 390.5               | -feet |                     | BORIN                                  | G NO. E              | 5                             |                                |                     |
|------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|---------------------|-------|---------------------|----------------------------------------|----------------------|-------------------------------|--------------------------------|---------------------|
| DRILL RIG                    |                                     | B-53                                                                                          | BORING                        | DIAMETER                       | 4                   | -inch |                     | DATE                                   | DRILLE               | 0                             | 6/28/                          | /95                 |
| ELEVATION<br>(FEET)<br>DEPTH | SAMPLE NO.<br>SAMPLE<br>GRAPHIC LOG | CLASS                                                                                         | AND<br>SIFICATIO              | Ň                              |                     |       | SOIL CLASSIFICATION | CONVERTED SPT BLOW<br>COUNT (BLOWS/FT) | DRY DENSITY<br>(PCF) | MOISTURE CONTENT<br>(PERCENT) | PERCENT RELATIVE<br>COMPACTION | ADDITIONAL<br>TESTS |
| 390                          | 105                                 | Brown silty sandy GRAVEL                                                                      | L - damp, me                  | edium dense (l                 | =ILLĮ)              |       | GM                  |                                        |                      |                               |                                | · · ·               |
| -<br>                        |                                     | టంపి                                                                                          |                               | (*11 ) \                       | ÷                   |       | CL                  |                                        |                      |                               |                                |                     |
|                              |                                     | Brown sandy silty CLAY -                                                                      | moist, stiff (                | (FILL)                         |                     |       | CL.                 |                                        |                      |                               |                                |                     |
| 10<br>10<br>5<br>5           | 5A<br>5B                            | Olive-brown clayey silty S/                                                                   | AND - moist                   | , medium den                   | se (FILL)           |       | SC                  | 10                                     | 111.4                | 17.0                          |                                |                     |
| 375 <sup>15</sup> E          | 5C B                                | Olive-brown clayey silty fir<br>with occasional weather                                       | ne sand - mo<br>red rock frag | bist, medium o<br>gments       | lense,              |       | SM                  |                                        |                      | 18.0                          |                                | BAG                 |
| 870 <sup>20</sup> 5          | 5D                                  | Olive-brown and gray COP<br>weathered, moderately<br>and sand lenses<br>Grades less weathered | PPER HILL V<br>hard to hard   | OLCANICS - r<br>, with occasio | noist,<br>Inal silt |       |                     | 66                                     |                      | 7.9                           |                                | BAG                 |
| 365 <sup>,25</sup>           |                                     | Refusal<br>Boring hole terminated at 2<br>No groundwater encounter                            |                               |                                | ·                   |       |                     |                                        |                      |                               |                                |                     |
|                              |                                     |                                                                                               |                               | e<br>V                         | *                   |       |                     |                                        |                      |                               |                                |                     |
|                              | 0010                                |                                                                                               |                               | EX                             | (PLO                | RA    |                     | NY B                                   | ORI                  | NG                            | LOG                            |                     |
| 2                            | State State of the                  | OUNGDAH<br>ASSOCIATES, IN                                                                     |                               |                                | SOM V               |       |                     |                                        |                      |                               |                                | 10-00-0             |
|                              | <u> </u>                            | GEOTECHNICAL & ENVIRONMENTAL                                                                  |                               | PROJECT N                      |                     |       |                     | DATE                                   |                      |                               | FIGUR                          | E A -               |
|                              |                                     |                                                                                               |                               | 95176.8                        |                     |       | Jul                 | y 199                                  | 5                    |                               | NO                             |                     |

.

| LOGO                         | GEC | BY         |        | JM                                      |                  |                                       | SUR                             | FACE ELEVATION              | 386.5   | -feet    |                     | BORIN                                  | G NO.                | 6                             | - (                            | 136.000             |
|------------------------------|-----|------------|--------|-----------------------------------------|------------------|---------------------------------------|---------------------------------|-----------------------------|---------|----------|---------------------|----------------------------------------|----------------------|-------------------------------|--------------------------------|---------------------|
| DRIL                         | LR  | G          | Μ      | obil                                    | e B-53           |                                       | BOR                             | ING DIAMETER                | 4       | -inch    |                     | DATE                                   | DRILLE               | D                             | 6/28                           | 95                  |
| ELEVATION<br>(FEET)<br>DEPTH |     | SAMPLE NO. | SAMPLE | GRAPHIC LOG                             |                  |                                       | CHNICAL DI<br>AND<br>CLASSIFICA | ESCRIPTION                  | 12      |          | SOIL CLASSIFICATION | CONVERTED SPT BLOW<br>COUNT (BLOWS/FT) | DRY DENSITY<br>(PCF) | MOISTURE CONTENT<br>(PERCENT) | PERCENT RELATIVE<br>COMPACTION | ADDITIONAL<br>TESTS |
| -385                         |     |            |        | 0.0                                     |                  | wn, silty SAND v<br>dense (FILL)      | with gravel - d                 | amp, loose to med           | lium    |          | SM<br>GM            |                                        |                      |                               |                                |                     |
| -<br>-<br>-380               | 5   | 6A         |        |                                         |                  | 10 đ                                  |                                 | ·                           |         |          |                     | 6                                      |                      | 8.9                           |                                |                     |
| -<br>-<br>-375               | 0-  |            |        | 0.0000000000000000000000000000000000000 |                  | nt brown to olive<br>noist, medium de |                                 | and with rock frag          | ments - |          | SM                  |                                        |                      |                               | 20                             | 80 (                |
| -<br>-370                    | 5   | 6B         | ·<br>N |                                         | Mo               |                                       | COPPER HILL V                   | /OLCANICS - dam<br>ely hard | p,      |          |                     | 52                                     |                      |                               | 50                             |                     |
| - 2<br>- 365<br>-            | 0-  |            |        |                                         | G                | arades less weath                     | nered, difficult                | drilling                    |         |          |                     |                                        |                      |                               | 103                            | 184. C              |
| -<br>-<br>-360               | 5   |            |        | <u>}:}:</u>                             |                  | ing hole terminat<br>groundwater end  |                                 | 2                           |         |          |                     |                                        |                      |                               |                                |                     |
| <br>-                        | -   |            |        |                                         |                  |                                       |                                 | 5a                          |         |          |                     |                                        |                      |                               | -                              |                     |
|                              |     |            |        |                                         |                  |                                       |                                 | EX                          | PLOF    | RAT      | OF                  | Y B                                    | ORII                 | NG                            | LOG                            |                     |
|                              |     |            |        | ¥<br>&                                  | <b>OU</b><br>ASS | JNGDA<br>OCIATES                      | HL, INC.                        | FOLS                        | OM V    | VAT      | ER                  | TRE                                    | TM                   | ENT                           | PLA                            | VT                  |
|                              | _   |            | -      |                                         | GEOTE            | CHNICAL & ENVIRONMENT                 | TAL                             | PROJECT NO<br>95176.E       |         | 2        |                     | DATE<br>y 199                          | 5                    |                               | FIGUR                          | A -7                |
|                              |     | _          |        |                                         |                  |                                       |                                 | 35170.E                     |         | 52<br>23 | Jui                 | y 199                                  |                      |                               | and the                        | 110                 |

| LOGGED BY JM                                                                       | SURF                                     | ACE ELEVATION 38     | 0.0 -feet | BORIN                                                         | G NO. 7                                  |                               |                     |
|------------------------------------------------------------------------------------|------------------------------------------|----------------------|-----------|---------------------------------------------------------------|------------------------------------------|-------------------------------|---------------------|
| DRILL RIG Mobile B-53                                                              | BORIN                                    | IG DIAMETER          | -inch     | DATE                                                          | DRILLED                                  | 6/28                          | 3/95                |
| ELEVATION<br>(FEET)<br>DEPTH<br>SAMPLE NO.<br>SAMPLE<br>GRAPHIC LOG<br>GRAPHIC LOG | FECHNICAL DES<br>AND<br>CLASSIFICAT      |                      | 2         | SOIL CLASSIFICATION<br>CONVERTED SPT BLOW<br>COUNT (BLOWS/FT) | DRY DENSITY<br>(PCF)<br>MOISTURE CONTENT | (PERCENT)<br>PERCENT RELATIVE | ADDITIONAL<br>TESTS |
| Brown silty clayer                                                                 | y SAND - damp, m                         | edium dense          |           | sc                                                            |                                          |                               |                     |
| -375 5-7A Loose, very mo                                                           | ist                                      | a                    |           | 5                                                             | 1                                        | 5.2                           | BAG                 |
| Light brown and t                                                                  | prown slightly clay                      | ey silty fine SAND - |           | SM                                                            |                                          | 4C                            |                     |
| moist, medium<br>fragments                                                         | dense, with occas                        | ional weathered rock | · _       |                                                               |                                          |                               |                     |
| 370 10-7B                                                                          |                                          | PER HILL VOLCANIC    | :5 -      | 63                                                            | 1                                        | 4.7                           | BAG                 |
| 365 15-7C 1                                                                        |                                          |                      |           | 90                                                            | 1                                        | 0.2                           | BAG                 |
| 360 20-                                                                            |                                          |                      |           |                                                               |                                          |                               |                     |
|                                                                                    |                                          |                      |           |                                                               |                                          | 9.3                           | BAG                 |
|                                                                                    | nated at 25.0 feet;<br>countered at 24.5 |                      | Ш         |                                                               |                                          | <u> </u>                      | . BAG               |
|                                                                                    |                                          |                      |           |                                                               |                                          |                               |                     |
|                                                                                    |                                          | FXPI                 | ORAT      | DRY R                                                         | ORINO                                    |                               |                     |
| YOUNGD & ASSOCIATE                                                                 | AHL                                      | FOLSON               |           |                                                               |                                          |                               |                     |
|                                                                                    |                                          | PROJECT NO.          |           | DATE                                                          | •                                        | FIGUE                         | E A C               |
|                                                                                    | 1                                        | 95176.E              |           | July 199                                                      | 5                                        | NO                            | A -8                |



APPENDIX B Laboratory Testing Direct Shear Test "R" Value Test

No to Berlinstein 1

and the second second

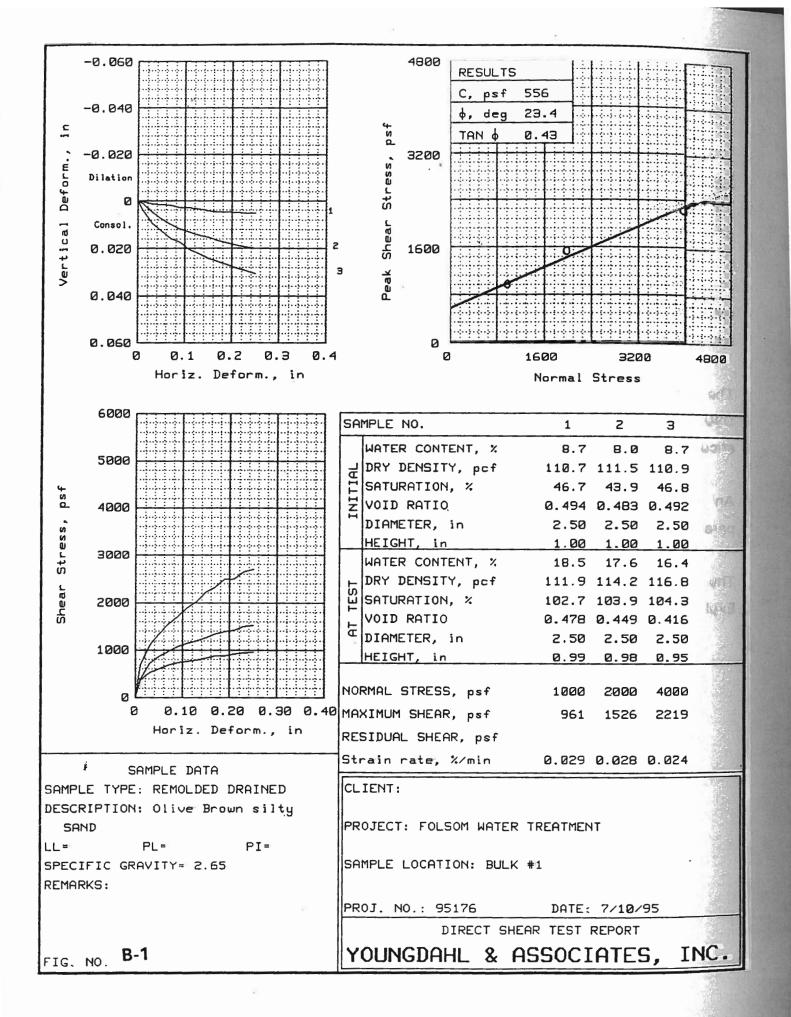
A CALL STREET

「「「「「「」」」

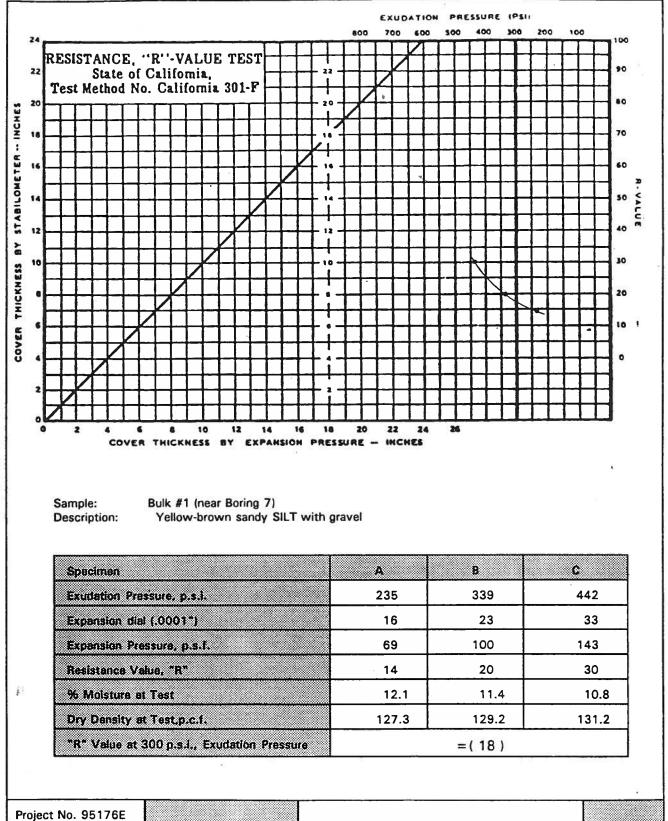
Contract of

Project No. 95176.E 25 July 1995

#### Laboratory Testing


The laboratory testing of undisturbed samples was directed toward determining the physical and engineering properties of the soils underlying the site.

Moisture content and dry density tests (ASTM D2937-83) were performed on representative undisturbed soil samples to determine the consistency of the soil and the moisture variation throughout the studied soil profile.

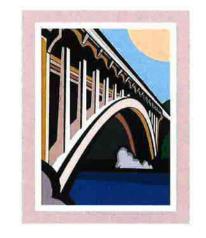

The strength parameters of onsite materials were based on a direct shear test (ASTM D3080-90) performed on a remolded sample representative of the near surface soils encountered at the site. The results of this test are presented in Figure B-1, this Appendix.

An R-Value test (California Test Method 301 - F) was performed to obtain pavement design parameters. The results of this test are presented on Figure B-2, this Appendix.

The results of the laboratory testing of undisturbed soil samples are summarized on the Exploratory Logs, Appendix A, Figure No.'s A-2 through A-8.



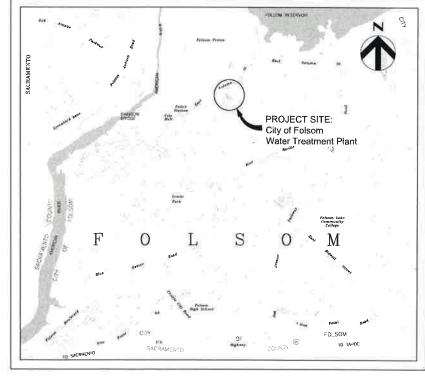
۰.




"R VALUE" TEST (Cal. 301-F)



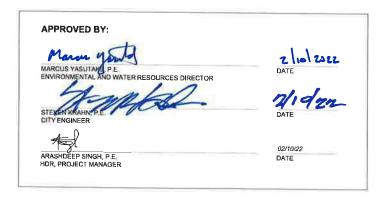
YOUNGDAHL & ASSOCIATES, INC. GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION LAB


## ATTACHMENT 1 – UPDATED 100% PROJECT DRAWINGS

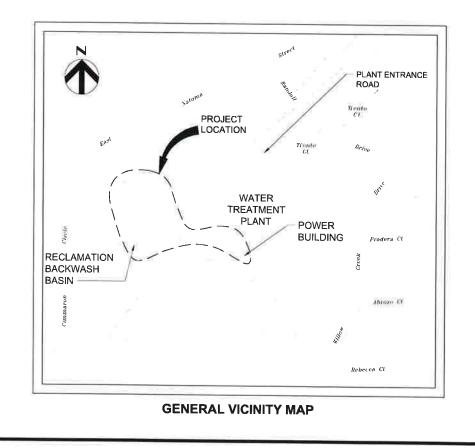


Contract Drawings For

City of Folsom Water Treatment Plant BACKWASH AND RECYCLED WATER CAPACITY PROJECT


CITY OF FOLSOM DISTINCTIVE BY NATURE




LOCATION MAP

ISSUED FOR BIDS FEBRUARY 2022 City Of Folsom

Project No. WA2103

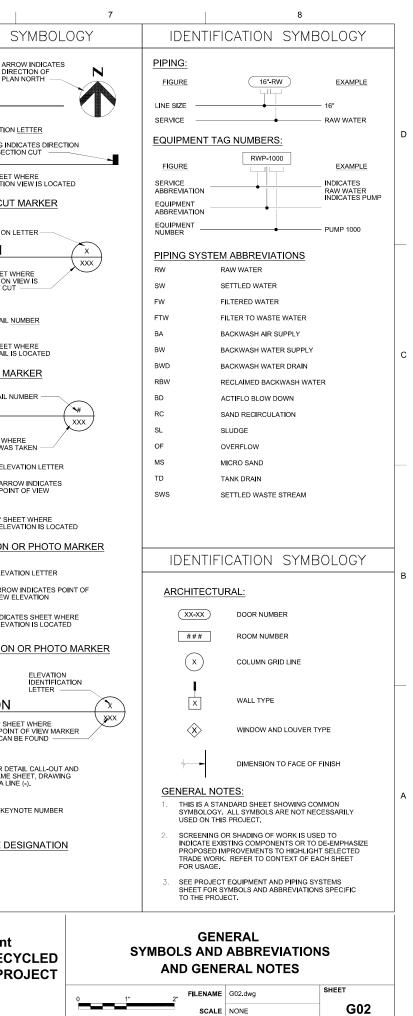


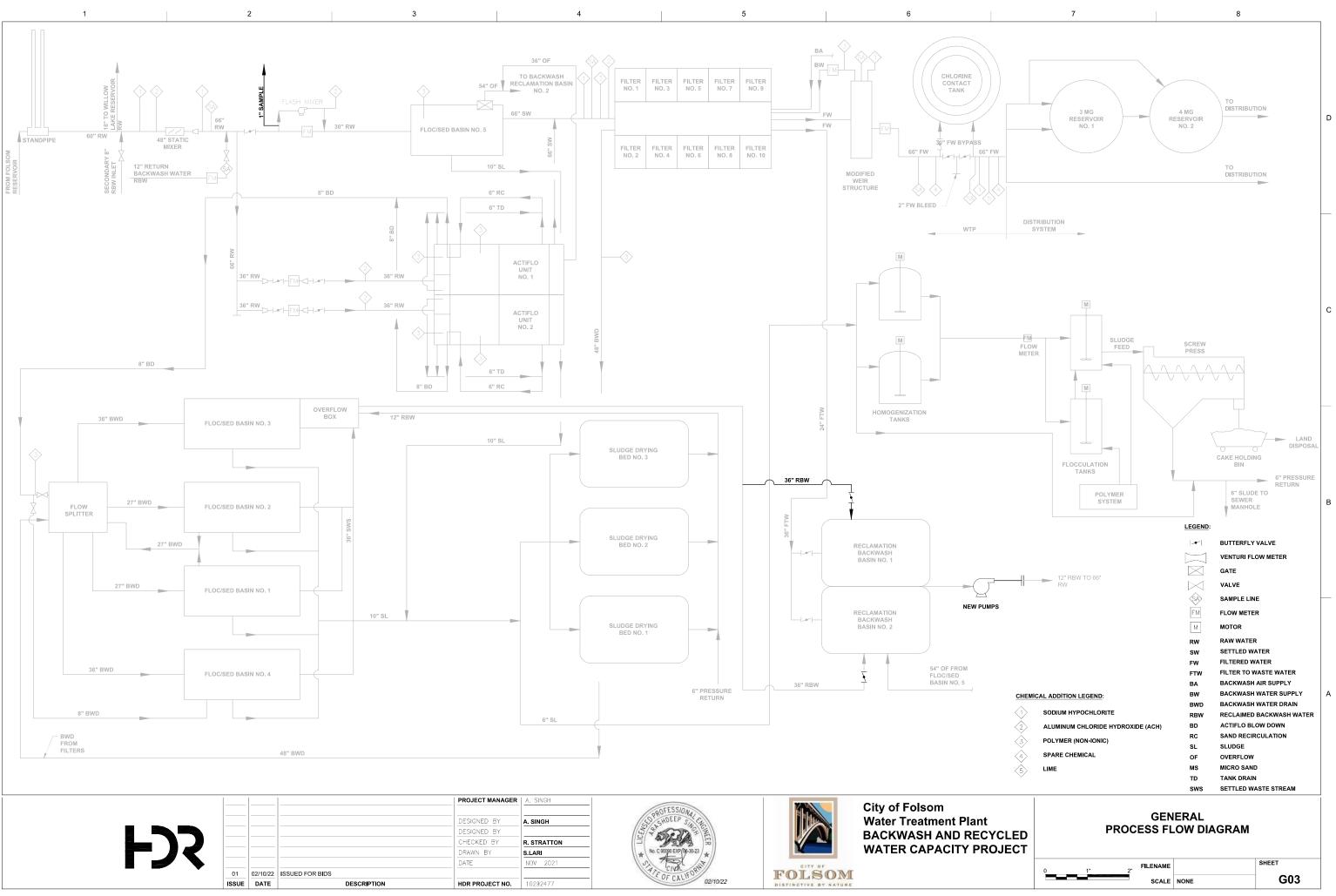


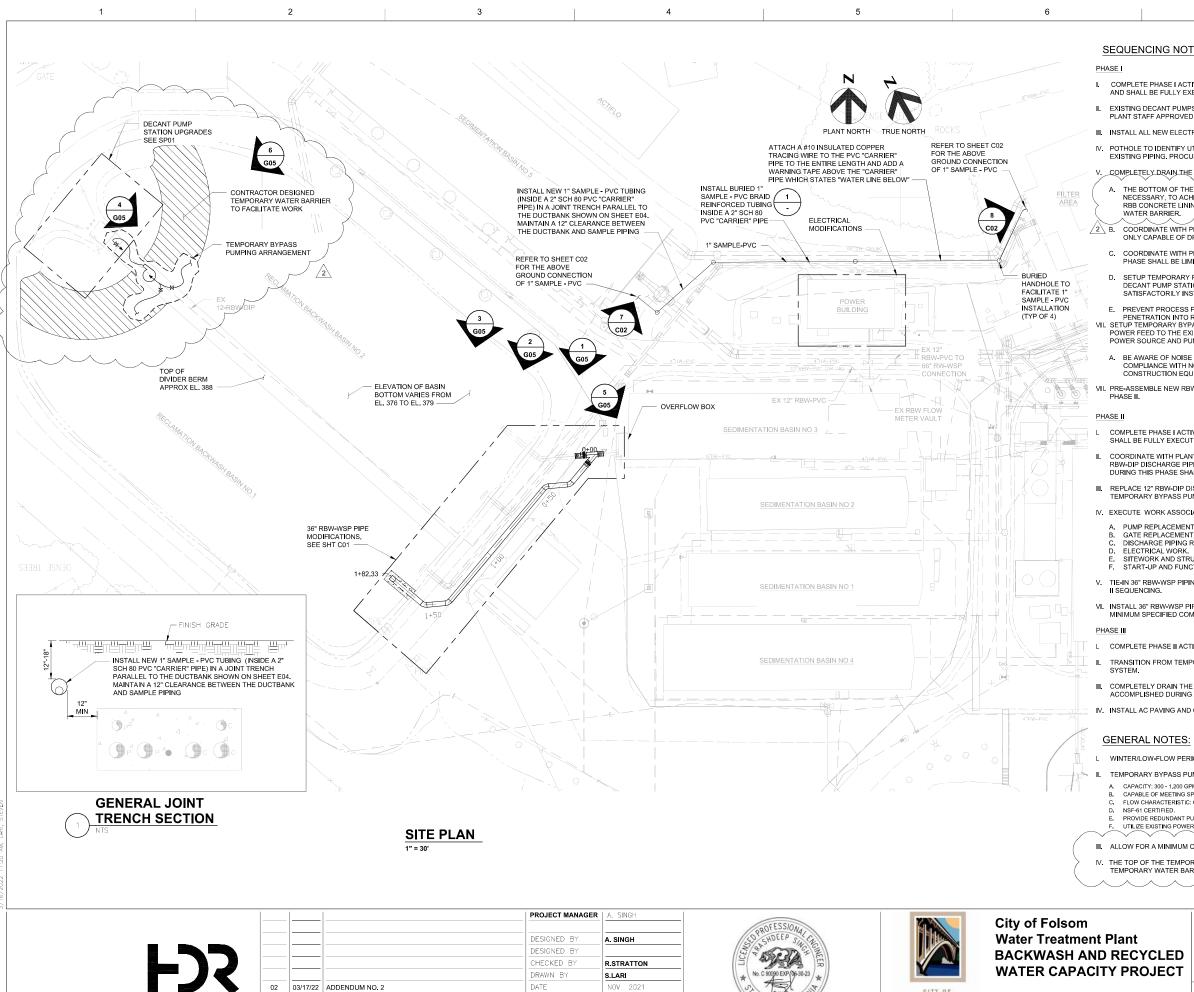


# **F**

## DRAWING INDEX


| 3 | E | Ν | E | R | A | L |  |
|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |  |


| 1.<br>2.<br>3. | G01<br>G02<br>G03 | COVER SHEET, LOCATION MAPS AND DRAWING INDEX<br>SYMBOLS AND ABBREVIATIONS AND GENERAL NOTES |
|----------------|-------------------|---------------------------------------------------------------------------------------------|
| 4.             | G03<br>G04        | PROCESS FLOW DIAGRAM<br>SITE PLAN AND SEQUENCING NOTES                                      |
| 5.             | G04<br>G05        | SITE PHOTOS                                                                                 |
| <b>.</b>       | 303               |                                                                                             |
| DEM            | DLITION           |                                                                                             |
| 6              | D01               | DEMOLITION PLAN AND SECTIONS                                                                |
|                |                   |                                                                                             |
| 7.             | C01               | ENLARGED 36" RBW-WSP PIPING PLAN                                                            |
| 8.             | C02               | STANDARD DETAILS                                                                            |
| STRU           | JCTURAL P         | ROCESS                                                                                      |
| 9              | SP01              | DECANT PUMP STATION PLAN AND SECTION                                                        |
| 10             | SP02              | STANDARD DETAILS                                                                            |
| ELEC           | TRICAL            |                                                                                             |
| 11.            | E01               | LEGEND, SYMBOLS, AND ABBREVIATIONS                                                          |
| 12             | E02               | EXISTING MCC 1A ONE LINE DIAGRAM - DEMOLITION                                               |
| 13             | E03               | RECLAMATION PUMP STATION - DEMOLITION                                                       |
| 14             | E04               | OVERALL SITE PLAN                                                                           |
| 15             | E05               | EXISTING MCC 1A ONE LINE DIAGRAM - MODIFIED                                                 |
| 16             | E06               | POWER BUILDING PLAN                                                                         |
| 17.            | E07               | RECLAMATION PUMP STATION                                                                    |
| 18.            | E08               | VFD CONTROL DIAGRAM RECLAMATION BACKWASH PUMPS                                              |
| 19,            | E09               | DETAILS                                                                                     |
| 0004           |                   |                                                                                             |


PROCESS AND INSTRUMENTATION

| 20 | 01 | LEGEND, SYMBOLS AND ABBREVIATIONS |
|----|----|-----------------------------------|
| 21 | 02 | DECANT PUMP STATION P&ID          |

|                      | 1                                                        | 2           | 3                                                                |                                       | 4                                      |                      | 5                                               | 6                                                    |
|----------------------|----------------------------------------------------------|-------------|------------------------------------------------------------------|---------------------------------------|----------------------------------------|----------------------|-------------------------------------------------|------------------------------------------------------|
|                      | ABB                                                      | REVIATION   |                                                                  |                                       | PIPING SYME                            | BOLOGY               |                                                 | GENERAL                                              |
| A/E                  | ARCHITECT/ENGINEER                                       | ID          | INSIDE DIAMETER, INTERIOR DIMENSION                              | SYMBOLOGY SHOW                        | N IS FOR SINGLE LINE PIPING. DOUBLE    |                      | EOUS (CONTINUED)                                |                                                      |
| ABAN<br>ABC          | ABANDON<br>AGGREGATE BASE COURSE                         | IE<br>IN    | INVERT ELEVATION<br>INCH                                         | LINE PIPING SYMBOL                    |                                        | MISCELLAN            | EOUS (CONTINUED)                                | A                                                    |
| AGGR                 | AGGREGATE                                                | INV         | INVERT                                                           | VALVES                                |                                        | Q                    |                                                 | P                                                    |
| ALIG<br>APRX         | ALIGNMENT<br>APPROXIMATE                                 | JT          | JOINT                                                            |                                       |                                        | ¥                    | PRESSURE GAGE (W/COCK)                          | PLAN                                                 |
| APVD<br>AVE          | APPROVED<br>AVENUE                                       |             | LEFT                                                             |                                       | GATE VALVE                             |                      |                                                 | 1/4" = 1'-0"                                         |
| AVG                  | AVERAGE                                                  | LATL        | LATERAL                                                          | X                                     | GLOBE VALVE                            |                      | TRAP                                            |                                                      |
| AWG                  | AMERICAN WIRE GAGE                                       | LP<br>LOTO  | LOW POINT<br>LOCK OUT TAG OUT                                    |                                       | BALL VALVE                             |                      | QUICK DISCONNECT                                | SECTI                                                |
| BF<br>BFV            | BLIND FLANGE<br>BUTTERFLY VALVE                          | MAX         | MAXIMUM                                                          |                                       |                                        |                      | CAM & GROOVE COUPLING                           | FLAG OF SE                                           |
| BLDG<br>BM           | BUILDING<br>BENCHMARK                                    | MECH        | MECHANICAL<br>MANUFACTURER                                       |                                       | CHECK VALVE                            | ]                    | CAP or PLUG                                     |                                                      |
| BPS                  | BOOSTER PUMP STATION                                     | MH          | MANHOLE                                                          |                                       | DOUBLE DISK CHECK VALVE                | co                   | INTERIOR CLEANOUT                               | * SHEE                                               |
| СВ                   | CATCH BASIN                                              | MIN<br>MJ   | MINIMUM<br>MECHANICAL JOINT                                      | ko                                    | BALL CHECK VALVE                       |                      | INTERIOR GEEANOUT                               | SECT                                                 |
| CF<br>C <b>I</b> P   | CUBIC FEET (FOOT)<br>CAST-IN-PLACE                       | N           | NORTH                                                            |                                       |                                        | ⊗                    | HOSE VALVE, HOSE BIBB OR<br>FLUSHING CONNECTION | SECTION CL                                           |
| CL                   | CENTERLINE                                               | NTS         | NOT TO SCALE                                                     |                                       | BUTTERFLY VALVE                        |                      |                                                 |                                                      |
| CMU<br>CMLC          | CONCRETE MANSONRY UNIT<br>CEMENT MORTAR LINED AND COATED | ос          | ON CENTER                                                        |                                       | DIAPHRAGM VALVE                        | HR-X                 | HOSE RACK                                       | SECTIO                                               |
| CO<br>COMB           | CLEANOUT, CONCRETE OPENING<br>COMBINATION                | OD<br>OF    | OUTSIDE DIAMETER<br>OVERFLOW                                     |                                       | PINCH VALVE                            | FD-X                 |                                                 | SECTION.                                             |
| CONC                 | CONCRETE                                                 | OH          | OVERHEAD                                                         | J.                                    | KNIFE GATE VALVE                       |                      | FLOOR DRAIN                                     | <u>SECTION</u><br>3/8" = 1'-0"                       |
| CONST<br>CP          | CONSTRUCTION<br>CONTROL POINT                            | PB          | PULL BOX                                                         |                                       | KNIFE GATE VALVE                       | X = TYPE DESI        | GNATED IN SPECIFICATIONS                        | * SHEE                                               |
| CPLG                 | COUPLING                                                 | PE<br>PL    | PLANE END<br>PROPERTY LINE                                       | -12 OR -124-                          | PRESSURE RELIEF VALVE                  | _                    |                                                 | SECTIO<br>FIRST C                                    |
| DG<br>DEG            | DEGENERATED GRANITE<br>DEGREE                            | PP<br>PROP  | POWER POLE<br>PROPERTY, PROPOSED                                 |                                       | PLUG VALVE                             |                      | PIPE IN SECTION                                 |                                                      |
| DEMO                 | DEMOLITION                                               | PVC         | POLYVINYL CHLORIDE                                               |                                       | NEEDLE VALVE                           |                      |                                                 |                                                      |
| DET<br>DI            | DETAIL<br>DROP INLET, DUCTILE IRON                       | PVMT<br>PS  | PAVEMENT<br>PUMP STATION                                         |                                       |                                        | O <sup>BU</sup>      | BELL UP (PLAN)                                  | DETAI                                                |
| DIA<br>DIM           | DIAMETER<br>DIMENSION                                    | QTY         | QUANTITY                                                         |                                       | PRESSURE REDUCING VALVE                | Чв∪                  | BELL UP (SECTION OR SCHEMATIC)                  |                                                      |
| DIP<br>DIST          | DUCTILE IRON PIPE                                        |             | RIGHT                                                            |                                       |                                        | · · ·                |                                                 | * SHEE<br>DETAI                                      |
| DWG                  | DISTANCE, DISTRIBUTION<br>DRAWING                        | R<br>RED    | REDUCER                                                          | ¦Ųx                                   | AIR RELEASE / VACUUM VALVE             | D                    | DRAIN (SECTION OR SCHEMATIC)                    |                                                      |
| Е                    | EAST                                                     | REM<br>REQD | REMOVE<br>REQUIRED                                               | \$                                    | A = AIR RELEASE<br>V = VACUUM          | ATA                  |                                                 | DETAIL                                               |
| EL<br>EMH            | ELBOW, ELEVATION<br>ELECTRICAL MANHOLE                   | RFCA<br>ROW | RESTRAINED FLANGE COUPLING ADAPTOR<br>RIGHT-OF-WAY               |                                       | C = COMBINATION                        |                      | AIR TOOL ASSEMBLY                               | DETAIL                                               |
| ENGR                 | ENGINEER                                                 | s           |                                                                  |                                       | PRESSURE REGULATING VALVE              | AVS                  | AUTOMATIC VALVE STATION                         | DETAIL                                               |
| EOP<br>ESEW          | EDGE OF PAVEMENT<br>EMERGENCY SHOWER AND EYE WASH        | SAM         | SOUTH<br>SAMPLE LINE                                             |                                       | PRESSURE REGULATING VALVE              | PRS                  | PRESSURE REDUCING STATION                       | 1" = 1'-0"                                           |
| EX<br>EXT            | EXISTING<br>EXTERIOR, EXTERNAL, EXTENSION                | SCH<br>SECT | SCHEDULE<br>SECTION                                              | —                                     | THREE WAY BALL VALVE                   |                      |                                                 | * SHEET V                                            |
| FBO                  | FURNISHED BY OWNER                                       | SHT<br>SL   | SHEET<br>SLOPE                                                   |                                       | THREE WAY PLUG VALVE                   | PLUMBING F           | PIPING:                                         | DETAIL W                                             |
| FCA<br>FDC           | FLANGED COUPLING ADAPTER<br>FIRE DEPARTMENT CONNECTION   | SLV<br>SPEC | SLEEVE<br>SPECIFICATION                                          |                                       | TIREE WAT FEOG VALVE                   | '                    | /T VENT (VT)                                    | EL                                                   |
| FE                   | FLANGED END                                              | ST          | STREET                                                           |                                       | THREE WAY BALL VALVE                   |                      | POTABLE WATER, COLD (PWC)                       | AF                                                   |
| FG<br>FH             | FINISHED GRADE<br>FIRE HYDRANT                           | STA<br>STD  | STATION<br>STANDARD                                              |                                       |                                        |                      |                                                 | XXX PC                                               |
| FL<br>FLG            | FLOW, FLOW LINE<br>FLANGE                                | SYM         | SYMBOL                                                           | MISCELLANEO                           | US                                     |                      | POTABLE WATER, HOT (PWH)                        | XXX                                                  |
| FN<br>FRP            | FENCE<br>FIBER-REINFORCED PLASTIC                        | TYP         | TYPICAL                                                          |                                       | VARIABLE AREA METER                    |                      |                                                 |                                                      |
| FT                   | FEET, FOOT                                               | UG          | UNDERGROUND                                                      |                                       | UNION                                  |                      |                                                 |                                                      |
| FTG<br>FUT           | FITTING<br>FUTURE                                        | UNO         | UNLESS NOTED OTHERWISE                                           |                                       |                                        |                      |                                                 | SINGLE ELEVATION                                     |
| G                    | GAS                                                      | VT<br>VTR   | VENT<br>VENT THROUGH ROOF                                        |                                       | Y-STRAINER                             |                      |                                                 |                                                      |
| GR<br>GV             | GRADE                                                    | w/          | WITH                                                             | .9                                    | FLEXIBLE HOSE OR TUBING                |                      |                                                 | ELE                                                  |
| GVL                  | GATE VALVE<br>GRAVEL                                     | W/O         | WITHOUT                                                          |                                       |                                        |                      |                                                 |                                                      |
| н                    | HEIGHT                                                   | W<br>WS     | WEST, WATER MAIN<br>WATERSTOP, WATER SURFACE                     |                                       | FLEXIBLE PIPING CONNECTION             |                      |                                                 |                                                      |
| HP                   | HIGH POINT                                               | WSP         | WELDED STEEL PIPE                                                |                                       | LINE SIZE CHANGE (CONCENTRIC REDUCER)  | MATERIA              | ALS IN PLAN/SECTION                             |                                                      |
|                      |                                                          | XSECT       | CROSS SECTION                                                    |                                       | LINE SIZE CHANGE (ECCENTRIC REDUCER)   |                      | ,                                               | A-11                                                 |
|                      |                                                          |             |                                                                  |                                       |                                        |                      | DEMOLITION                                      | MULTIPLE ELEVATIO                                    |
|                      | SITE PLA                                                 | N SYMBOLO   | GY                                                               | C+                                    | LINE TURNING DOWN                      |                      |                                                 |                                                      |
|                      |                                                          |             |                                                                  | • • • • • • • • • • • • • • • • • • • | LINE TURNING UP                        | 4                    | CONCRETE                                        |                                                      |
|                      |                                                          | NOTES       | <u>:</u>                                                         |                                       | BLIND FLANGE                           |                      | MASONRY (CMU)                                   |                                                      |
| 50.5 _               | CONTOUR                                                  | т           | TELEPHONE LINE                                                   | ====                                  | COMPRESSION SLEEVE COUPLING            |                      | ASPHALT                                         | ELEVATION                                            |
| $\cap$               | VEGETATION                                               | E-          | ELECTRIC LINE                                                    | =                                     | COMPRESSION SLEEVE COOPLING            |                      | LANDSCAPE MATERIAL/DRAIN ROCK (PLAN)            | 1/4" = 1'-0"                                         |
| • •                  |                                                          | _           |                                                                  |                                       | FLANGED COUPLING ADAPTER (FCA)         | 100000               | GRANULAR FILL (SECTION)                         | PC                                                   |
| • 0.                 |                                                          | F           | FIBER OPTIC                                                      | +1                                    |                                        |                      | SAND (SECTION),                                 | CA                                                   |
|                      | P                                                        | C-          | COMMUNICATION                                                    |                                       | FLEXIBLE CONNECTION OR EXPANSION JOINT |                      | CRUSHED ROCK (PLAN),                            |                                                      |
|                      | STORM DRAIN CATCH BASIN                                  | 0           | HANDRAIL                                                         |                                       |                                        |                      | EARTH                                           | * IF PLAN AND SECTION, OR<br>DETAIL ARE SHOWN ON SAM |
| <b>.</b>             |                                                          |             | PIPELINE                                                         | <del></del>                           | HARNESSED MECHANICAL COUPLING          |                      | METAL (SECTION)                                 | NUMBER IS REPLACED BY A                              |
| , PF                 |                                                          |             | LARGE PIPELINE (> 10"±)                                          |                                       | WELDED CONNECTION                      |                      |                                                 |                                                      |
| ,€ <sub>Т</sub><br>€ |                                                          |             | <ul> <li>— PIPELINE BENEATH CONCRETE<br/>OR STRUCTURE</li> </ul> |                                       |                                        |                      | GRATING (PLAN)                                  | К                                                    |
| ▼ F                  |                                                          |             |                                                                  |                                       | WELDING NECK CONNECTION                |                      | CHECKERED PLATE                                 |                                                      |
| × 75                 |                                                          |             | -X Chain Link Fence<br>Property Line                             |                                       | GROOVED COUPLING                       |                      | WOOD - CONTINUOUS                               | KEYNOTE I                                            |
| • _75                | .8 FINISHED SPOT ELEVATION                               |             | CENTERLINE                                                       |                                       | FLANGED JOINT                          |                      |                                                 |                                                      |
|                      |                                                          |             |                                                                  |                                       |                                        |                      | WOOD - NON CONTINUOUS                           |                                                      |
| <u></u> c            | P-X HORIZONTAL CONTROL POINT                             |             | LIMITS OF CONSTRUCTION                                           |                                       | MECHANICAL OR PUSH ON JOINT            |                      | GYPSUM BOARD                                    |                                                      |
| ۲                    | BENCHMARK                                                |             | ROW                                                              |                                       | PVC JOINT                              |                      |                                                 |                                                      |
| 9                    |                                                          |             |                                                                  | PROJECT MANAGER                       | R   A. SINGH                           |                      |                                                 | 1                                                    |
|                      |                                                          |             |                                                                  |                                       |                                        | ROFESSION            | Cit                                             | y of Folsom                                          |
|                      |                                                          |             |                                                                  | DESIGNED BY                           | A. SINGH                               | SHDEEP SIN FR        | Wa Wa                                           | ater Treatment Plan                                  |
|                      |                                                          |             |                                                                  | DESIGNED BY                           | A P P                                  | ASCID F E            |                                                 | CKWASH AND RE                                        |
|                      |                                                          |             |                                                                  | CHECKED BY                            | R. STRATTON                            |                      |                                                 | ATER CAPACITY P                                      |
|                      | FSS                                                      |             |                                                                  | DRAWN BY<br>DATE                      | (*)                                    | C 90090 EXP(06-30-23 |                                                 |                                                      |
|                      |                                                          |             | ISSUED FOR BIDS                                                  |                                       | NOV 2021                               | CIVAL                | FOLSOM                                          |                                                      |
|                      |                                                          |             | DESCRIPTION                                                      | HDR PROJECT NO.                       | 10292477                               | FOFCALIFON 02/10/22  | DISTINCTIVE BY NATURE                           |                                                      |







PROJECT NUMBER

10292477

01

ISSUE

DATE

12/01/21 ISSUED FOR BIDS

DESCRIPTION

CINA

03/16/22

OFCAL

FOLSOM

| ICING NOTES:                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                 |
| TE PHASE I ACTIVITIES PRIOR TO START OF PHASE II ACTIVITIES. ALL PHASE I ACTIVITIES SHALL OCCUR DURING<br>LL BE FULLY EXECUTED WITHIN THE WINTER/LOW-FLOW SEASON.                               |
| DECANT PUMPS SHALL BE CONTINUOUSLY OPERATIONAL THROUGHOUT PHASE I WITH THE EXCEPTION OF A,<br>AFF APPROVED, 24 HOUR TEMPORARY SHUTDOWN.                                                         |
| LL NEW ELECTRICAL REQUIRED FOR NEW DECANT PUMPS.                                                                                                                                                |
| TO IDENTIFY UTILITY CROSSINGS IMPACTING THE NEW 36 IN RBW-WSP PIPE AND TO VERIFY ELEVATION OF<br>PIPING. PROCURE AND PRE-ASSEMBLE PIPING AND VALVE IN PREPARATION FOR A TIE-IN DURING PHASE II. |

V. COMPLETELY DRAIN THE RECLAMATION BACKWASH BASIN (RBB) NO. 1 AND 2 AND SETUP TEMPORABY WATER BARRIER.

A. THE BOTTOM OF THE RBB CONTAINS 24 INCH THICK BLANKET OF SLUDGE WHICH SHALL BE PUMPED OUT, AS NECESSARY, TO ACHIEVE A FUNCTIONAL WATER TIGHT INTERFACE BETWEEN THE TEMPORARY WATER BARRIER AND RBB CONCRETE LINING TO FACILITATE WORK. THE SLUDGE MAY BE PUMPED TO THE WET SIDE OF THE TEMPORARY WATER BARRIER.

2 B. COORDINATE WITH PLANT STAFF TO DRAIN THE RBB USING THE EXISTING DECANT PUMPS. THE DECANT PUMPS ARE ONLY CAPABLE OF DRAINING THE BASIN DOWN TO THE TOP OF SETTLED SLUDGE.

C. COORDINATE WITH PLANT STAFF TO TEMPORARILY SHUTDOWN THE RBW SYSTEM. SHUTDOWN PERIOD DURING THIS PHASE SHALL BE LIMITED TO 24 CONSECUTIVE HOURS.

D. SETUP TEMPORARY PIPING TO CONVEY PROCESS FLOW FROM DOWNSTREAM OF THE WATER BARRIER TO THE DECANT PUMP STATION TO MAKE THE DECANT PUMP STATION OPERATIONAL AGAIN AFTER THE WATER BARRIER IS SATISFACTORILY INSTALLED.

E. PREVENT PROCESS FLOW FROM ENTERING RBB NO.1 TO FACILITATE INSTALLATION OF 36" RBW-WSP PIPE PENETRATION INTO RBB NO. 1 VI. SETUP TEMPORARY BYPASS PUMPING SYSTEM TO BYPASS THE DECANT PS. CONTRACTOR MAY UTILIZE EXISTING

POWER FEED TO THE EXISTING DECAT PUMPS. HOWEVER, CONTRACTOR MUST PROVIDE A BACK-UP, REDUNDANT, POWER SOURCE AND PUMPING SYSTEM TO MA'INTAIN CONTINUOUS PUMPING THROUGHOUT THE BYPASS PERIOD.

BE AWARE OF NOISE ORDINANCES IN THE NEIGHBORHOOD SURROUNDING THE WATER TREATMENT PLANT. COMPLIANCE WITH NOISE RESTRICTIONS IS REQUIRED. SATURDAY, SUNDAY, AND NIGHT WORK ARE NOT PERMITTED. CONSTRUCTION EQUIPMENT SHALL BE MUFFLED AND SHROUDED TO SATISFY NOISE LEVELS REQUIREMENTS.

VII. PRE-ASSEMBLE NEW RBW/DECANT PS DISCHARGE PIPING IN PREPARATION FOR AN EXPEDITED REPLACEMENT DURING

COMPLETE PHASE | ACTIVITIES PRIOR TO START OF PHASE || ALL PHASE || ACTIVITIES SHALL OCCUR DURING AND SHALL BE FULLY EXECUTED WITHIN THE WINTER/LOW-FLOW SEASON

COORDINATE WITH PLANT STAFF FOR A TEMPORARY SHUTDOWN OF DECANT PS TO FACILITATE REPLACEMENT OF 12" RBW-DIP DISCHARGE PIPING AND IMPLEMENTATION OF TEMPORARY BYPASS PUMPING SYSTEM, SHUTDOWN PERIOD DURING THIS PHASE SHALL BE LIMITED TO 24 CONSECUTIVE HOURS, UNLESS OTHERWISE APPROVED BY PLANT STAFF.

III. REPLACE 12" RBW-DIP DISCHARGE PIPING AND MAKE TEMPORARY BYPASS PUMPING SYSTEM OPERATIONAL. TEMPORARY BYPASS PUMPING SHALL REMAIN IN CONTINUOUS OPERATION THROUGHOUT PHASE II.

IV. EXECUTE WORK ASSOCIATED WITH DECANT PS WHICH INCLUDES BUT IS NOT LIMITED TO:

PUMP REPLACEMENT

DISCHARGE PIPING REPLACEMENT AND ASSOCIATED COATING.

ELECTRICAL WORK. SITEWORK AND STRUCTURAL WORK.

START-UP AND FUNCTIONAL TESTING

V. TIE-IN 36" RBW-WSP PIPING AND ASSOCIATED VALVING DURING THE SAME SHUTDOWN MENTIONED IN LINE 2 OF PHASE II SEQUENCING.

VI. INSTALL 36" RBW-WSP PIPE PENETRATION AND ALLOW THE NEW CONCRETE TO ADEQUATELY CURE AND REACH MINIMUM SPECIFIED COMPRESSIVE STRENGTH PRIOR TO ALLOWING PROCESS FLOW BACK INTO RBB NO. 1.

I. COMPLETE PHASE II ACTIVITIES PRIOR TO START OF PHASE III.

TRANSITION FROM TEMPORARY BYPASS PUMPING TO NEW DECANT PS. REMOVE TEMPORARY BYPASS PUMPING

III. COMPLETELY DRAIN THE RBB TO FACILITATE REMOVAL OF TEMPORARY WATER BARRIER, THIS WORK SHALL BE ACCOMPLISHED DURING A 24 HOUR PLANT SHUTDOWN COORDINATE WITH PLANT STAFF.

IV. INSTALL AC PAVING AND OTHER WORK.

#### GENERAL NOTES:

WINTER/LOW-FLOW PERIOD: NOVEMBER TO APRIL

#### TEMPORARY BYPASS PUMPING REQUIREMENTS

CAPACITY: 300 - 1.200 GPM

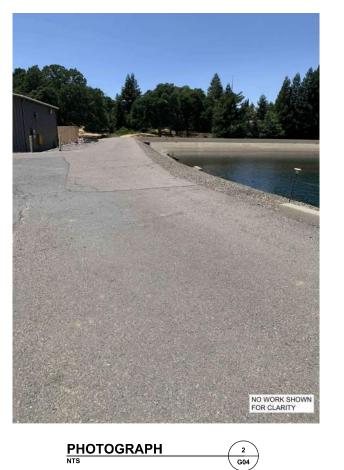
CAPABLE OF MEETING SPECIFIED FLOW RANGE WITH A THROTTLING VALVE.

FLOW CHARACTERISTIC: GRITTY BACKWASH WATER. NSF-61 CERTIFIED.

PROVIDE REDUNDANT PUMP AND POWER SOURCE

UTILIZE EXISTING POWER FEED TO DECANT PUMP STATION AS PRIMARY POWER SOURCE.  $\sim$  $\sim$ 

III. ALLOW FOR A MINIMUM OF 7 CALENDAR DAYS BETWEEN 24 HR RBW SYSTEM SHUTDOWN / OUTAGE PERIOD.


IV. THE TOP OF THE TEMPORARY WATER BARRIER SHALL BE EL. 390'. ASSUME A TOTAL HEIGHT OF 14'-0" FOR THE TEMPORARY WATER BARRIER, THIS SHALL BE FIELD VERIFIED BY THE CONTRACTOR DURING CONSTRUCTION.

| CYCLED | G NOTES | t<br>CYCLED<br>ROJECT |
|--------|---------|-----------------------|
| RUJEUI | SHEET   |                       |



5





3

EX 36" RBW-WSP

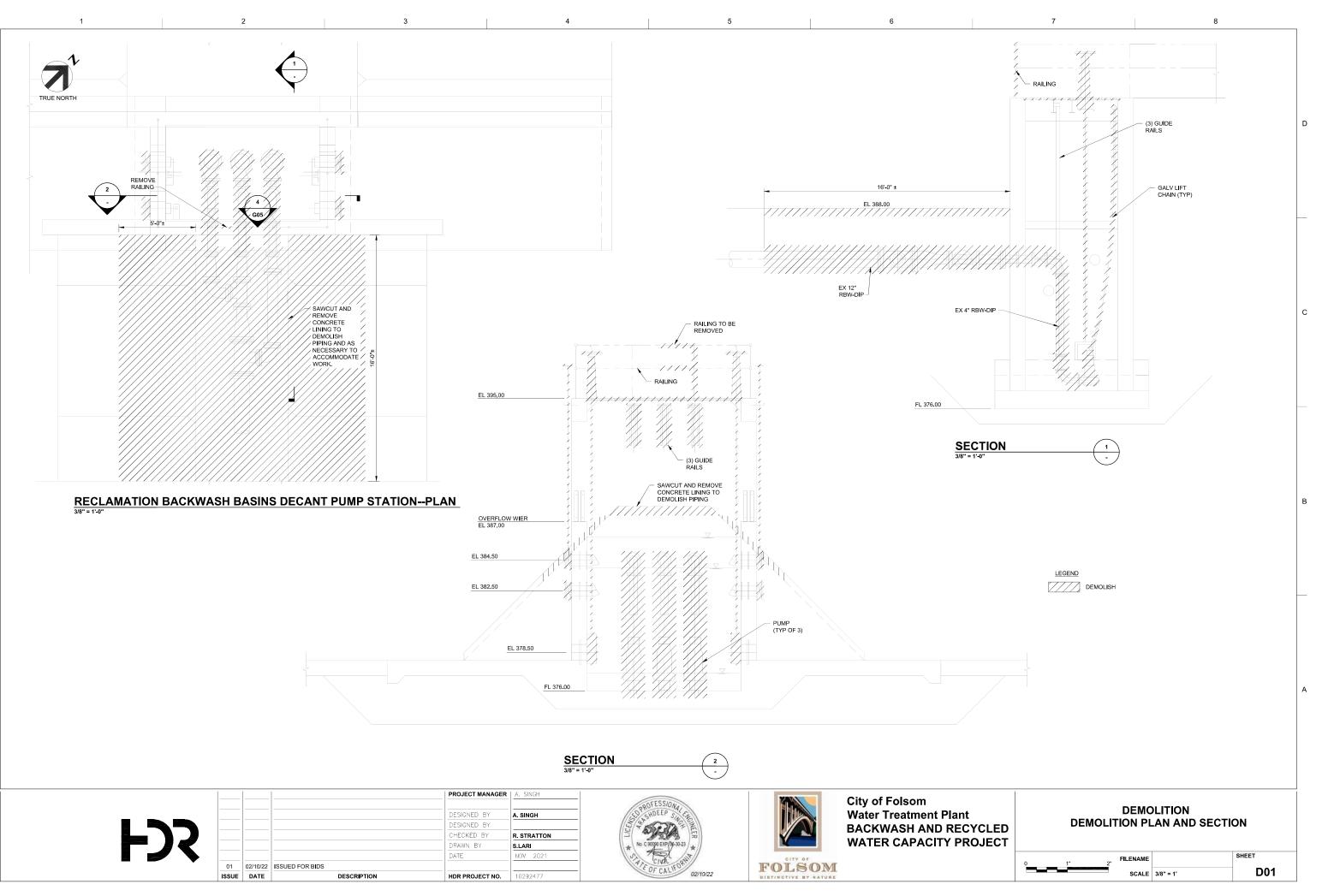
5 G04

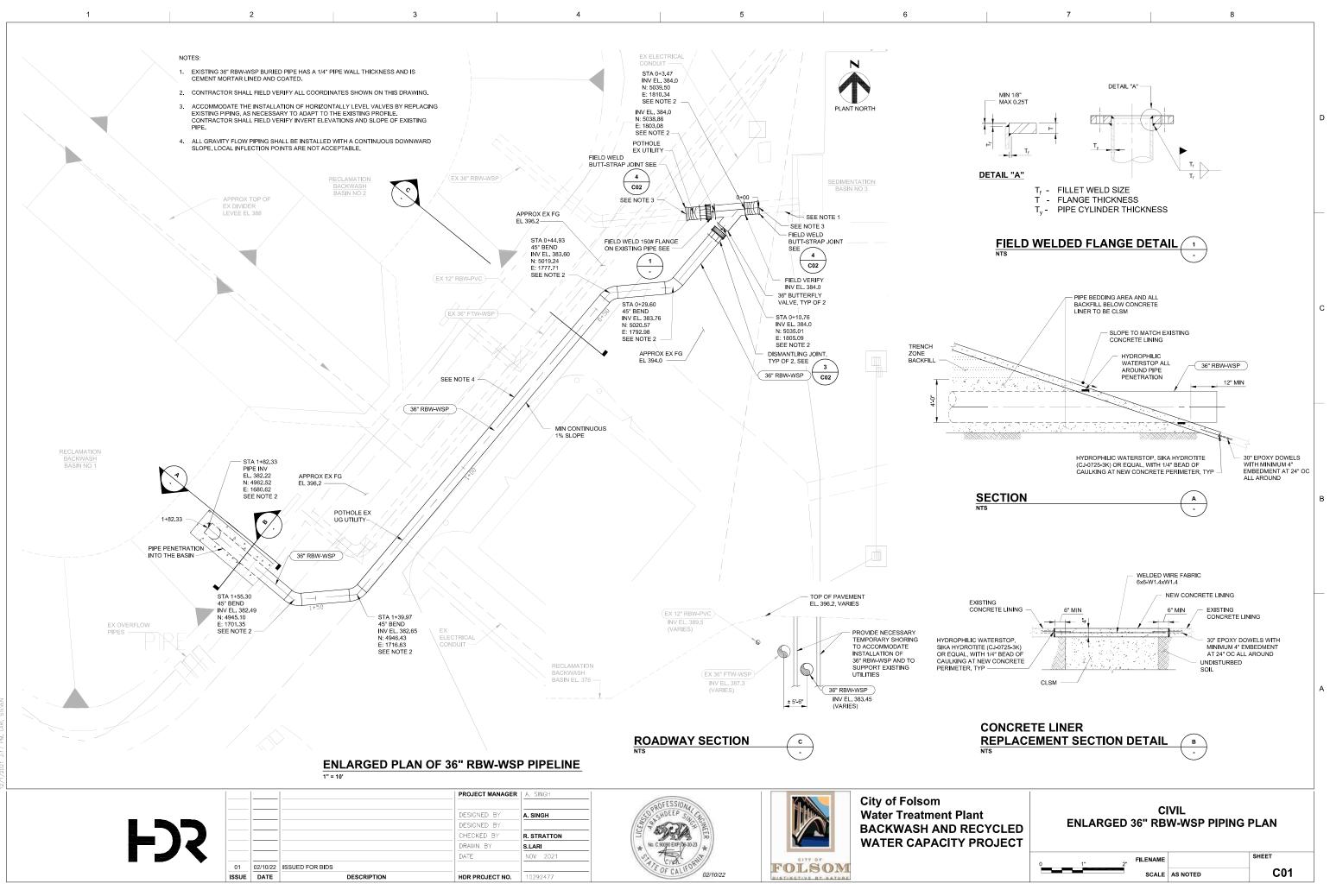
PHOTOGRAPH



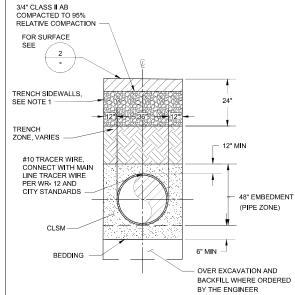
2

1





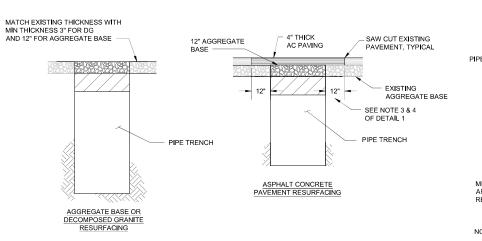




NO WORK SHOW 金田市である










- 1. TRENCH SIDEWALLS SHALL BE VERTICAL IN ORDER TO MINIMIZE DISTURBANCE ON EXISTING FINISH GRADE. PROVIDE SHORING TO SUPPORT TRENCH SIDEWALLS TO ACCOMMODATE CONSTRUCTION AND TO SATISFY APPLICABLE TRENCH SAFETY REGULATIONS.

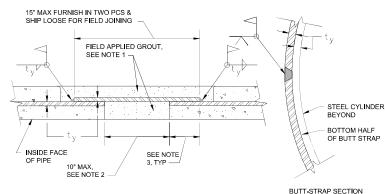
2. A.C. THICKNESS: 4" MINIMUM.

- 3. SAW CUT 12" BEYOND THE WIDTH OF THE TRENCH. 4. T-GRIND REQUIRED FOR ALL PAVEMENTS (12" MINIMUM WIDTH 1 1/2" DEEP GRIND AND PAVE TO THE LIP OF
- GUTTER (IF APPLICABLE) 5. BACKFILL SHALL BE MECHANICALLY CONSOLIDATED, SEE CITY SPECIFICATIONS FOR BACKFILL AND COMPACTION REQUIREMENTS.
- 6. 3" WIDE (MINIMUM) MARKING TAPE, 18" ABOVE PIPE, TAPE SHOULD READ "CAUTION BURIED PIPELINE BELOW"
- 7. PIPE ZONE COVER OVER THE TOP OF PIPELINES SHALL BE MINIMUM OF 12".
- 8. SEE SPECIFICATIONS FOR MATERIAL REQUIRED FOR BEDDING, EMBEDMENT AND TRENCH ZONE BACKFILL: COMPACTION AND OTHER TRENCHING REQUIREMENTS.
- 9. IN AREAS OF FLOWING GROUNDWATER, FILER FABRIC SHALL BE PLACED AROUND THE PIPE ZONE BEDDING AND SHALING IN ACCORDANCE WITH THE ON-SITE GEOTECHNICAL ENGINEER, AS WELL AS METHODS FOR COLLECTING AND CONVEYING GROUNDWATER AWAY FROM UNDERGROUND ROADWAY AND INFRASTRUCTURE PER GEOTECHNICAL ENGINEER.

໌ 1 ີ



2


-

G04

PROFILE VIEW NOTES:

**TYPICAL PIPE TRENCH RESURFACING** NTS

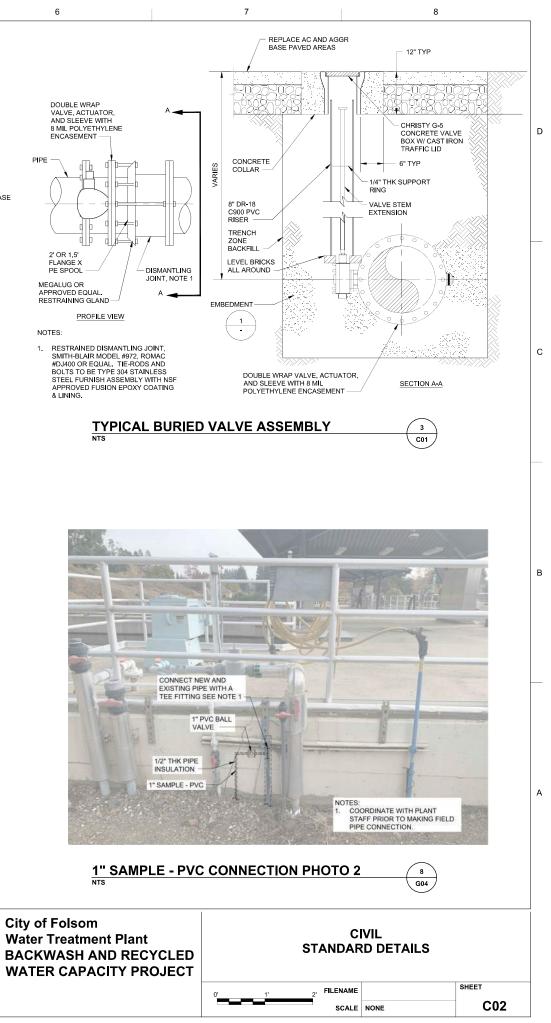




#### NOTES

NTS

1. FIELD APPLIED REINFORCED JOINT GROUT, INSIDE AND OUTSIDE, REINFORCED WITH 2x4 12 GAUGE WELDED WIRE FABRIC ON OUTSIDE ONLY. SPOT WELD FABRIC TO STEEL BUTT STRAP


TRENCH SECTION FOR PIPE INSTALLATION

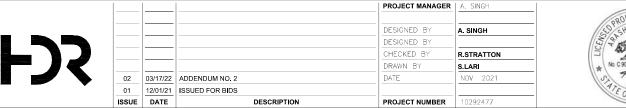
- 2. DISTANCE BETWEEN FILLET WELDS SHALL BE MINIMUM OF 10 ty OR 4", WHICHEVER IS GREATEST
- 3. LAP DISTANCE SHALL BE MINIMUM OF 5 x ty OR 2" WHICHEVER IS GREATEST
- 4. PROVIDE 4" THREADED OPENING HAND HOLES FOR ACCESS FOR GROUTING PER AWWA C200 AS NECESSARY
- 5. CONTRACTOR TO POTHOLE AND CONFIRM EX PIPE MATERIAL AND DIMENSIONS PRIOR TO ORDERING PIPE, ELBOWS AND BUTT STRAPS
- 6. FOLLOW AWWA C602 FOR FIELD APPLICATION OF CEMENT MORTAR LINING AND COATING.
- 7. ALL FIELD WELDS SHALL BE MAGNETIC PARTICLE TESTED PER AWS D1.1.

## **BUTT STRAP FOR STEEL PIPE DETAIL**

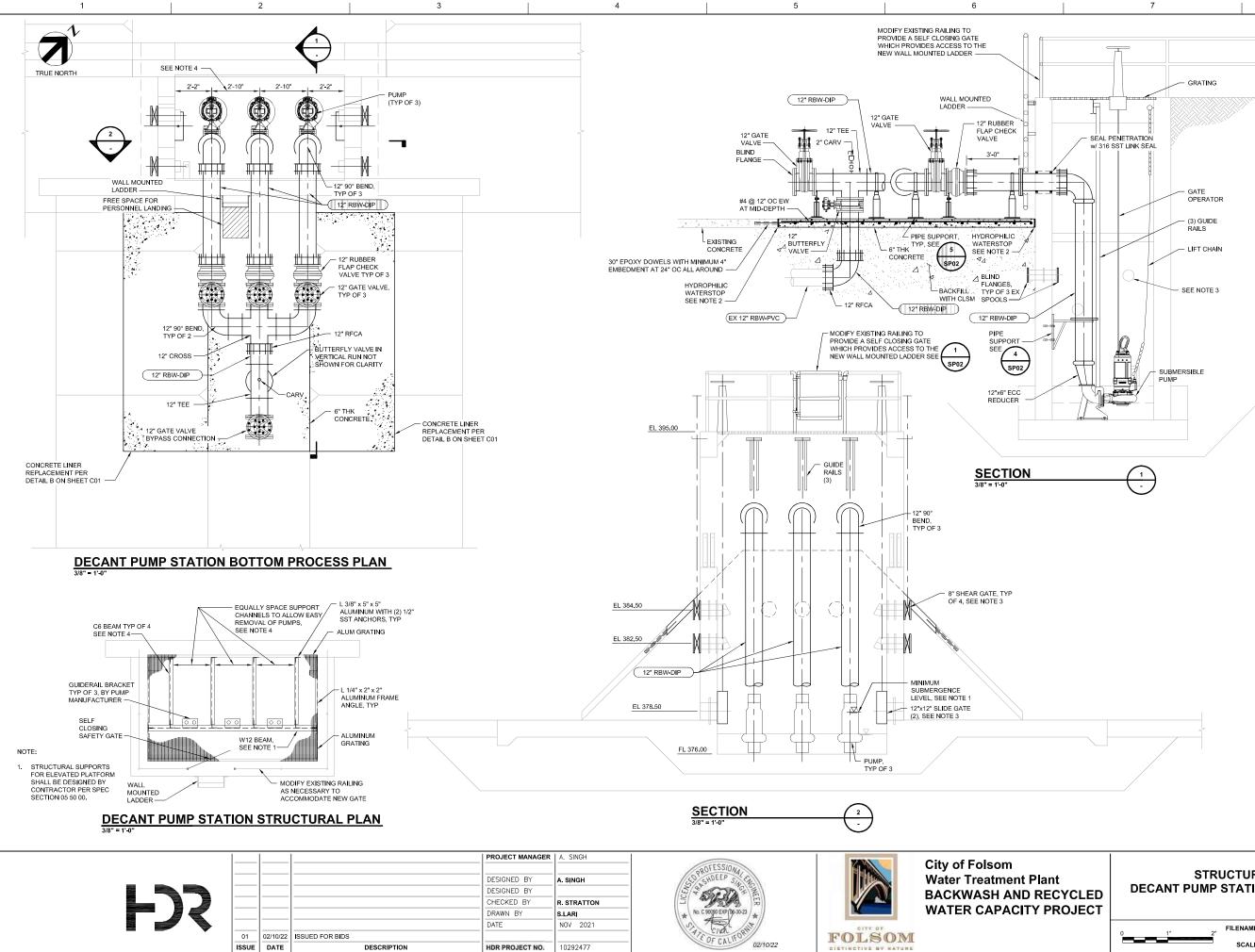








## **1" SAMPLE - PVC CONNECTION PHOTO 1**




|   |       |          |                 | PROJECT MANAGER | A. SINGH    |                                 | MANNA                 |
|---|-------|----------|-----------------|-----------------|-------------|---------------------------------|-----------------------|
|   |       |          |                 | DESIGNED BY     | A. SINGH    | PROFESSIONAL                    |                       |
|   |       |          |                 | DESIGNED BY     | A. SINGH    |                                 |                       |
|   |       |          |                 | CHECKED BY      | R. STRATTON | ER ER                           |                       |
|   |       |          |                 | DRAWN BY        | S.LARI      | ★ No. C 90090 EXP (06-30-23 / ★ | <b>K</b>              |
|   |       |          |                 | DATE            | NOV 2021    | A TON IT                        | CITY OF               |
| • | 01    | 02/10/22 | ISSUED FOR BIDS |                 |             | ATE OF CALIFOR                  | FOLSOM                |
|   | ISSUE | DATE     | DESCRIPTION     | HDR PROJECT NO. | 10292477    | 02/10/22                        | DISTINCTIVE BY NATURE |

NT

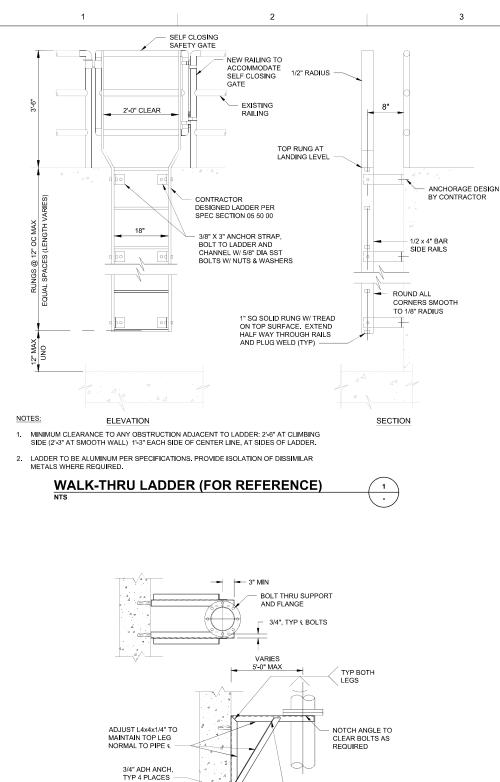











1. VERIFY WITH PUMP MANUFACTURER.

- 2. HYDROPHILIC WATERSTOP, SIKA HYDROTILE (CJ-0725-3K) OR EQUAL, WITH 1/4" BEAD OF CAULKING AT NEW CONCRETE PERIMETER, TYP.
- ALL THE EXISTING GATES IN THE DECANT PUMP STATION WET WELL SHALL BE REPLACED. AFTER REPLACEMENT, ALL GATES SHALL UNDERGO FIELD LEAKAGE TESTING PER AWWA STANDARDS. UNDER THE OPERATING HEAD. SEATING OR UNSEATING, THE ALLOWABLE LEAKAGE SHALL NOT EXCEED 0.10 GPM/FT OF SEATING PERIMETER. CONTRACTOR SHALL ASSUME THAT ALL OF THE EXISTING CONCRETE PENETRATIONS RELATED TO THE GATES LEAK, THEREFORE, NEED TO BE REPAIRED. REPAIR LEAKS IN CONCRETE PENETRATIONS USING XYPEX PATCH'N PLUG, A HYDRAULIC CEMENT COMPOUND.
- 4. PUMP SPACING MAY REQUIRE ADJUSTMENT BASED ON DIMENSIONS OF SELECTED PUMP.

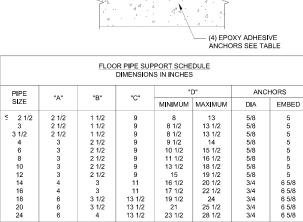


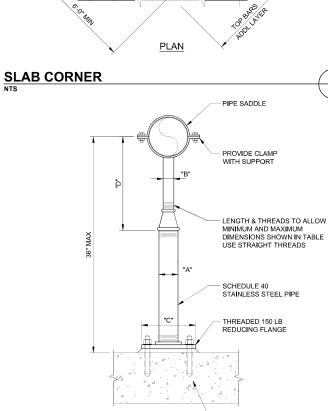
| ant<br>ECYCLED<br>PROJECT | STRUCTUR<br>DECANT PUMP STATIC | AL PROCESS<br>ON PLAN AND SI | ECTIONS |
|---------------------------|--------------------------------|------------------------------|---------|
|                           | FILENAME                       |                              | SHEET   |
|                           | SCALE                          | NONE                         | SP01    |

|   |       |          |                 | PROJECT MANAGER | A. SINGH    | ALESSIO.                  |                       | City of Folsom  |
|---|-------|----------|-----------------|-----------------|-------------|---------------------------|-----------------------|-----------------|
|   |       |          |                 | DESIGNED BY     | A. SINGH    | SPROTEDSIONAL CA          |                       | Water Treatment |
|   |       |          |                 | DESIGNED BY     |             | S & Co Do F E             |                       | BACKWASH ANI    |
|   |       |          |                 | CHECKED BY      | R. STRATTON | OT R                      |                       |                 |
|   |       |          |                 | DRAWN BY        | S.LARI      | No. C 90090 EXP (06-30-23 |                       | WATER CAPACI    |
|   |       |          |                 | DATE            | NOV 2021    | S Tool IT                 | CITY OF               |                 |
| • | 01    | 02/10/22 | ISSUED FOR BIDS |                 |             | ATE OF CALIFOR            | FOLSOM                |                 |
|   | ISSUE | DATE     | DESCRIPTION     | HDR PROJECT NO. | 10292477    | 02/10/22                  | DISTINCTIVE BY NATURE |                 |



TYP


4


3/16 2

- 6 5/8" MIN

**RISER PIPE SUPPORT** 

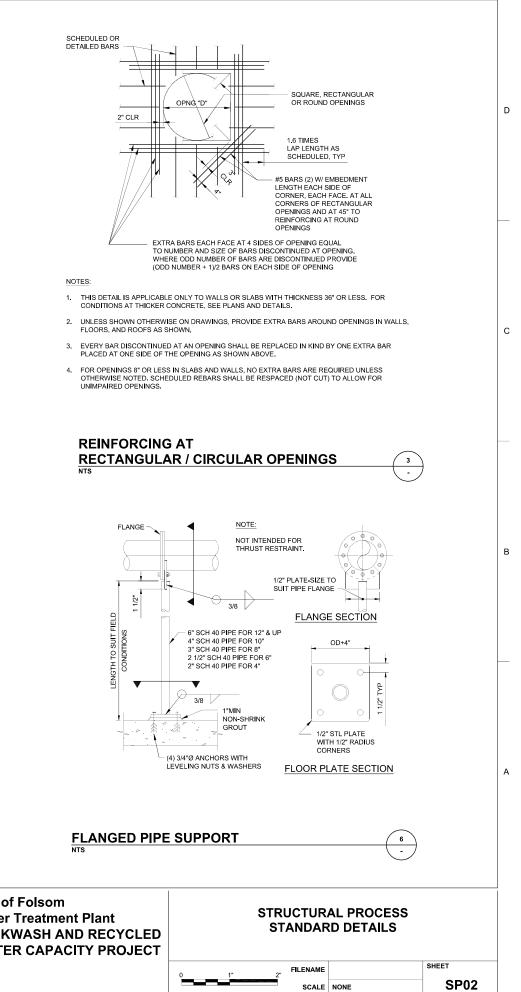
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                      | 10 | 3 |       | -      |        | 16 1/2 | 5/8 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-------|--------|--------|--------|-----|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                     |    |   | 2 1/2 | 0      |        |        |     |
| 14         4         3         11         16 1/2         20 1/2         3/4           16         4         3         11         17 1/2         22 1/2         3/4           18         6         3 1/2         13 1/2         19 1/2         24         3/4           20         6         3 1/2         13 1/2         12 1/2         3/4 | 12 |   |       | 9      | 13 1/2 | 18 1/2 | 5/8 |
| 16         4         3         11         17 1/2         22 1/2         3/4           18         6         3 1/2         13 1/2         19 1/2         24         3/4           20         6         3 1/2         13 1/2         21         25 1/2         3/4                                                                            |    | 3 | 2 1/2 | 9      | 15     | 19 1/2 | 5/8 |
| 18         6         3 1/2         13 1/2         19 1/2         24         3/4           20         6         3 1/2         13 1/2         21         25 1/2         3/4                                                                                                                                                                  | 14 | 4 | 3     | 11     | 16 1/2 | 20 1/2 | 3/4 |
| 20 6 3 1/2 13 1/2 21 25 1/2 3/4                                                                                                                                                                                                                                                                                                            | 16 | 4 | 3     | 11     | 17 1/2 | 22 1/2 | 3/4 |
|                                                                                                                                                                                                                                                                                                                                            | 18 | 6 | 3 1/2 | 13 1/2 | 19 1/2 | 24     | 3/4 |
| 24         6         4         13 1/2         23 1/2         28 1/2         3/4                                                                                                                                                                                                                                                            | 20 | 6 | 3 1/2 | 13 1/2 | 21     | 25 1/2 | 3/4 |
|                                                                                                                                                                                                                                                                                                                                            | 24 | 6 | 4     | 13 1/2 | 23 1/2 | 28 1/2 | 3/4 |
|                                                                                                                                                                                                                                                                                                                                            | 24 | 6 | 4     | 13 1/2 | 23 1/2 | 28 1/2 | 3/4 |





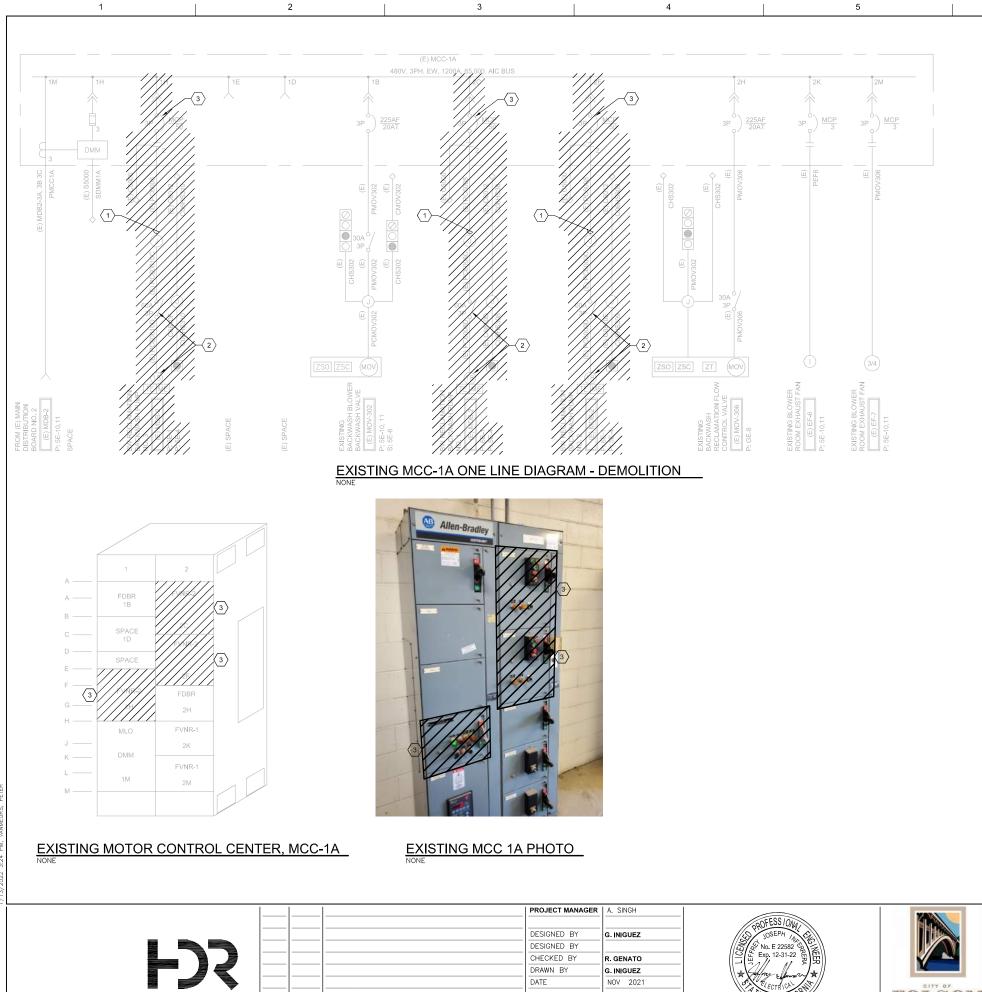
MIN

TOP AND BOTTOM SAME


SIZE AND SPACING AS THE GREATER TRANSVERSE OR LONGITUDINAL REINF

2

-


5

NOTES:



| 1                                                                                    | 2                                                                                                      |                                         | 3                                                                           |                   | 4                 | 5                                                                                                             |                                             | 6                                                                                                            |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| °) X ° 100AF<br>200A OR 200A 0R 100AF<br>30D 200 0R 2000 000 000 000 000 000 000 000 | LOW - VOLTAGE CIRCUIT BREAKER (CB).<br>RATINGS AND NO. OF POLES AS SHOWN.                              | 100<br>KVA                              | NON-MOTOR LOAD WITH DESIGN                                                  | KVA, KW, OR AMP   |                   | NORMALLY OPEN CONTACT (N.O.)                                                                                  | PC                                          | PHOTOCELL                                                                                                    |
| 0/3P 0/3P                                                                            | WHEN SPECIFIC TYPE IS REQUIRED, X INDICATES<br>TYPE.<br>TYPES:                                         |                                         | CONTROL POWER TRANSFORME                                                    | R (CPT)           |                   | NORMALLY CLOSED CONTACT (N.C.)                                                                                | \$ <sup>×</sup> <sub>x</sub>                | TOGGLE SWITCH<br><u>SUBSCRIPTS:</u>                                                                          |
|                                                                                      | MCCB - MOLDED CASE<br>ICCB - INSULATED CASE<br>LVP - LOW - VOLTAGE POWER                               |                                         | VOLTAGE TRANSFORMER (VT OR                                                  | : PT)             |                   | INTERLOCK; X INDICATES TYPE                                                                                   |                                             | X - INDICATES TYPE<br>NONE - SINGLE POLE<br>3 - THREE-WAY                                                    |
| <u> </u>                                                                             | MCP - MOTOR CIRCUIT PROTECTOR<br>(RATING PER CONNECTED LOAD)                                           | E                                       | CURRENT TRANSFORMER (CT)                                                    |                   |                   | <u>TYPES:</u><br>E - ELECTRICAL<br>M - MECHANICAL                                                             |                                             | 4 - FOUR-WAY<br>HP - TOGGLE SWITCH, HORSEPOWER<br>K - KEY SWITCH                                             |
| СВ                                                                                   | SEPARATELY MOUNTED CIRCUIT BREAKER; SEE<br>ELECTRICAL ONE - LINE DIAGRAM OR SCHEDULE FO<br>DESCRIPTION | R DMP                                   | DIGITAL METERING PACKAGE                                                    |                   |                   | K - KEY<br>3 POSITION SELECTOR SWITCH, MAINTAINED CO                                                          | NTACTS                                      | TE - MANUAL MOTOR STARTER W/ TH<br>P - PILOT LIGHT<br>L - LIGHTED HANDLE<br>Y - INDICATES CONTROLLING SWITCH |
| GFP                                                                                  | GROUND FAULT PROTECTION                                                                                | RTM                                     | RUN TIME METER                                                              |                   |                   | UNLESS OTHERWISE NOTED, 2-POSITION SIMILAR                                                                    | R                                           | TRANSFORMER                                                                                                  |
| 52                                                                                   | MEDIUM - VOLTAGE CIRCUIT BREAKER                                                                       |                                         | NEUTRAL BUS                                                                 |                   |                   | NORMALLY OPEN PUSHBUTTON, MOMENTARY<br>CONTACT UNLESS OTHERWISE NOTED                                         | CS<br>HS                                    | CONTROL STATION                                                                                              |
|                                                                                      | FUSE, SIZE, AND NUMBER OF FUSES AS NOTED                                                               | <u> </u>                                | GROUND                                                                      |                   |                   | NORMALLY CLOSED PUSHBUTTON, MOMENTARY<br>CONTACT UNLESS OTHERWISE NOTED                                       | ss                                          | SELECTOR SWITCH                                                                                              |
| _&_                                                                                  | FUSED CUTOUT, CURRENT RATING, FUSE SIZE, AND<br>NUMBER OF POLES AS NOTED                               |                                         | LIGHTNING ARRESTER                                                          |                   |                   | INDICATING LIGHT, X INDICATES LENS COLOR                                                                      | РВ                                          | PUSHBUTTON                                                                                                   |
|                                                                                      | FUSIBLE SWITCH, CURRENT RATING, FUSE SIZE, AND QUANTITY AS NOTED                                       |                                         | LOW VOLTAGE SURGE PROTECT                                                   | VE DEVICE         |                   | PUSH TO TEST INDICATING LIGHT, X INDICATES L<br>COLOR                                                         |                                             | INSTRUMENTATION/CONTROL DEVICE                                                                               |
| _~_                                                                                  | NON-FUSED SWITCH, CURRENT RATING, AND<br>NUMBER OF POLES AS NOTED                                      |                                         |                                                                             |                   |                   | LENS COLORS:<br>R - RED Y - YELLOW                                                                            | SD                                          | NETWORK SWITCH                                                                                               |
| $\approx$                                                                            | DISCONNECT OR DRAWOUT CONNECTION                                                                       |                                         | ELECTRICAL CONNECTION                                                       |                   |                   | G - GREEN W - WHITE<br>B - BLUE A - AMBER                                                                     | so                                          | NETWORK SWITCH/OCCUPANCY SENS                                                                                |
|                                                                                      | MAGNETIC MOTOR STARTER AND<br>SEPARATELY MOUNTED COMBINATION MAGNETIC                                  |                                         | NO ELECTRICAL CONNECTION                                                    |                   |                   | ELECTRICAL MONITORING DEVICE                                                                                  | 0                                           | CEILING MOUNTED NETWORK OCCUP                                                                                |
| в                                                                                    | MOTOR STARTER                                                                                          |                                         |                                                                             |                   |                   | WHM - UTILITY WATT-HOUR METER PER UTILITY<br>REQUIREMENTS<br>AS - CURRENT SENSOR                              | D                                           | CEILING MOUNTED NETWORK DIMMIN                                                                               |
|                                                                                      | SEPARATELY MOUNTED MOTOR CONTROLLER WITH<br>SHORT CIRCUIT PROTECTION AND DISCONNECT                    | SV OR O-                                | SOLENOID VALVE                                                              |                   |                   | AM - AMP METER<br>WM - WATT METER<br>VS - VOLT SENSOR                                                         |                                             | SPECIAL-PURPOSE RECEPTACLE AS I                                                                              |
|                                                                                      | MOTOR STARTER AND CONTROLLER SUBSCRIPTS:<br>A - MAGNETIC STARTER NEMA SIZE                             |                                         | CONTROL/RELAY COIL; X INDICAT<br>Y INDICATES LOOP NO. WHEN US               |                   |                   | VM - VOLT METER                                                                                               |                                             | RECEPTACLES AS NOTED OR SPECIFI                                                                              |
|                                                                                      | B - STARTER TYPE<br>NONE - FULL VOLTAGE NON-REVERSING (FVNR)                                           |                                         | TYPES:<br>CR - CONTROL RELAY                                                |                   |                   | CONTROL PANEL INTEGRAL OR PROVIDED WITH<br>EQUIPMENT                                                          | ASSOCIATED                                  | TELECOMMUNICATIONS OUTLET JUNC<br>PORTS SHOWN, RUN EQUAL NUMBER                                              |
|                                                                                      | FVR - FULL VOLTAGE REVERSING<br>2S - TWO SPEED<br>RVAT - REDUCED VOLTAGE AUTO TRANSFORMER              |                                         | DP - DEFINITE PURPOSE RELAY<br>LC - LIGHTING CONTACTOR<br>M - MOTOR STARTER |                   |                   | CONTROL PANEL WITH DISCONNECT SWITCH INT<br>PROVIDED WITH ASSOCIATED EQUIPMENT                                |                                             | COMMUNICATIONS BACKBOARD                                                                                     |
|                                                                                      | C - CONTROL DIAGRAM OR CONTROLS                                                                        |                                         | PC - PHOTO CELL<br>TC - TIME CLOCK<br>TD - TIME DELAY RELAY                 |                   |                   | JUNCTION OR PULL BOX                                                                                          |                                             | JUNCTION BOX                                                                                                 |
|                                                                                      | SCHEDULE NUMBER (IF REQUIRED)<br>D - CONTROLLER TYPE                                                   | ~ 0                                     | TR - TIMING RELAY<br>NORMALLY OPEN TIME DELAY RE                            |                   |                   | PANELBOARD (250V TO 600V)                                                                                     | ⊨tter v v v v v v v v v v v v v v v v v v v | QUAD-DUPLEX RECEPTACLE, TWO NE<br>UNDER COMMON COVER PLATE                                                   |
|                                                                                      | VFD - VARIABLE FREQUENCY DRIVE<br>SS - SOLID STATE                                                     |                                         | TIME DELAY ON CLOSING AFTER                                                 |                   |                   | PANELBOARD (LESS THAN 250V)                                                                                   |                                             | DUPLEX RECEPTACLE, NEMA 5-20R                                                                                |
|                                                                                      | MOTOR CONTROLLER                                                                                       | oto                                     | NORMALLY CLOSED TIME DELAY<br>WITH TIME DELAY ON OPENING A<br>ENERGIZED     |                   |                   | ELECTRICAL EQUIPMENT ENCLOSURE: SWITCHB4<br>MOTOR CONTROL CENTER, CONTROL PANEL, OR<br>EQUIPMENT AS INDICATED |                                             | FLOOR MOUNTED DUPLEX RECEPTAC                                                                                |
|                                                                                      | THERMAL OVERLOAD ELEMENT                                                                               | °,∽                                     | NORMALLY OPEN TIME DELAY RE<br>TIME DELAY ON OPENING AFTER<br>DE-ENERGIZED  |                   | ζζ <sup>X</sup> γ | CEILING/PENDANT-MOUNTED LED LUMINAIRE                                                                         | ⊢⊖ <sub>Y</sub> ×                           | SIMPLEX RECEPTACLE, NEMA 5-20R<br><u>SUBSCRIPTS:</u>                                                         |
|                                                                                      | THERMAL OVERLOAD RELAY CONTACT                                                                         | oto                                     | NORMALLY CLOSED TIME DELAY<br>WITH TIME DELAY ON CLOSING A<br>DE-ENERGIZED  |                   | HZ X              | WALL-MOUNTED LED LUMINAIRE                                                                                    |                                             | X - INDICATES TYPE<br>GFCI - GROUND FAULT CIRCUIT INTI<br>Y - INDICATES CIRCUIT NUMBER FROM                  |
|                                                                                      | DISCONNECT OR SAFETY SWITCH, 30A, 3P,<br>NON-FUSED UNLESS OTHERWISE NOTED                              |                                         | NORMALLY OPEN TEMPERATURE<br>CLOSE ON RISING TEMPERATURE                    |                   | z O Y             | CEILING/PENDANT-MOUNTED LED FIXTURE                                                                           |                                             | PEDESTAL                                                                                                     |
| (7 1/2) OR (HP)                                                                      | MOTOR WITH DESIGN HORSEPOWER                                                                           |                                         | NORMALLY CLOSED TEMPERATU                                                   | RE SWITCH;        | Z C X<br>Y        | WALL-MOUNTED LED FIXTURE                                                                                      |                                             | CONDUIT TURNING DOWN                                                                                         |
|                                                                                      | (WHEN INDICATED)                                                                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | NORMALLY OPEN FLOW SWITCH;                                                  |                   | z C Y             | CEILING/PENDANT-MOUNTED LED FIXTURE<br>NORMAL/EMERGENCY                                                       |                                             |                                                                                                              |
|                                                                                      |                                                                                                        | 010                                     | CLOSE ON INCREASING FLOW                                                    | CH:               | ₽ <b></b> _X<br>Y | WALL-MOUNTED LED FIXTURE<br>NORMAL/EMERGENCY                                                                  |                                             | HOME RUN TO PANEL, 2 #12, 1 #12G IN<br>OTHERWISE NOTED                                                       |
| G                                                                                    | GENERATOR                                                                                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | OPEN ON INCREASING FLOW                                                     |                   |                   | DOUBLE-FACED CEILING OR WALL-MOUNTED EXI<br>LIGHT; DIRECTIONAL ARROWS (IF REQUIRED) AS                        |                                             | — CIRCUIT RUN BETWEEN DEVICES EXP<br>NON-ARCHITECTURALLY FINISHED AR                                         |
| o o ATS                                                                              | TRANSFER SWITCH, CURRENT RATING, AND<br>NUMBER OF POLES AS NOTED<br>ATS - AUTOMATIC                    | 0<br>0<br>0                             | CLOSE ON RISING LEVEL                                                       |                   |                   | INDICATED ON PLANS<br>SINGLE-FACED CEILING OR WALL-MOUNTED EXIT<br>LIGHT; DIRECTIONAL ARROWS (IF REQUIRED) AS |                                             | CONCEALED IN ARCHITECTURALLY FI<br>CONDUIT AND CONDUCTOR SIZES SH.<br>SAME AS THE HOMERUN FOR THE CIR        |
|                                                                                      | MTS - MANUAL                                                                                           |                                         | OPEN ON RISING LEVEL                                                        | ,                 |                   | INDICATED ON PLANS<br>AREA OR ROADWAY LIGHT - POLE-MOUNTED                                                    |                                             | NON-ARCHITECTURALLY FINISHED AR                                                                              |
|                                                                                      | TRANSFORMER                                                                                            | a to                                    | CLOSE ON INCREASING PRESSUR                                                 | RE                |                   | LIGHTING FIXTURE SUBSCRIPTS:<br>X - INDICATES FIXTURE TYPE PER LIGHTING                                       |                                             | BURIED, OR UNDER FLOOR SLAB. CON<br>CONDUCTOR SIZES SHALL BE THE SA<br>HOMERUN FOR THE CIRCUIT.              |
|                                                                                      | 3-PHASE, 4-WIRE GROUNDED WYE<br>CONNECTION                                                             |                                         | OPEN ON INCREASING PRESSURI                                                 |                   |                   | FIXTURE SCHEDULE<br>Y - INDICATES CIRCUIT NUMBER FROM PANELBO<br>z - INDICATES CONTROLLING SWITCH (IF REQUIR  |                                             | CIRCUIT HASH MARKS (WHEN INDICAT<br>SHORT, SINGLE DOT, AND DOUBLE DO<br>PHASE, NEUTRAL, EQUIPMENT GROUP      |
| LP100<br>208/120V<br>3Ø, 4W                                                          | SWITCHBOARD OR PANELBOARD; NAME, VOLTAGE,<br>PHASE, NUMBER OF WIRES WHEN INDICATED                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | NORMALLY OPEN LIMIT SWITCH,<br>CLOSE ON REACHING LIMIT                      |                   | X<br>Y            | EMERGENCY LIGHT FIXTURE, 2 ATTACHED HEAD<br>SHOWN                                                             | S AS                                        | ISOLATED EQUIPMENT GROUND, RESI<br>IN 3/4" CONDUIT UNLESS OTHERWISE                                          |
|                                                                                      |                                                                                                        |                                         | NORMALLY CLOSED LIMIT SWITCH<br>OPEN ON REACHING LIMIT                      | H,                | Υ×                | EMERGENCY LIGHT, REMOTE MOUNTED HEAD                                                                          | -                                           | MLO; MAIN LUGS ONLY                                                                                          |
| €M                                                                                   | UTILITY METER                                                                                          | PM-#                                    | POWER MONITOR                                                               |                   |                   |                                                                                                               |                                             |                                                                                                              |
|                                                                                      |                                                                                                        |                                         |                                                                             |                   |                   | DEFSS/04/                                                                                                     |                                             | City of Folsom                                                                                               |
|                                                                                      |                                                                                                        |                                         |                                                                             | SIGNED BY G. IN   | IIGUEZ            | JSEPH / 14 CE                                                                                                 |                                             | Water Treatment Plant                                                                                        |
|                                                                                      |                                                                                                        |                                         | СН                                                                          | ECKED BY R.G      | ENATO             | GOI 1 E22582 V9 12-31-22 PR                                                                                   |                                             | BACKWASH AND REC<br>WATER CAPACITY PR                                                                        |
|                                                                                      |                                                                                                        |                                         |                                                                             |                   | IIGUEZ<br>/ 2021  | * Hing elfoursen *                                                                                            |                                             |                                                                                                              |
|                                                                                      |                                                                                                        | ATE ISSUED FOR BIDS DES                 | CRIPTION                                                                    | R PROJECT NO. 102 | 92477             | EOFCALIFOT 02/10/22                                                                                           | FOLSOM                                      |                                                                                                              |

|                                                                                                                                                                                                                             | 7  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                              |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| VER RATED<br>V THERMAL ELEMENT<br>TCH (IF REQUIRED)<br>ICE<br>ENSOR<br>WING PHOTOCELL<br>AS DEFINED ON PLANS<br>WITTY AND SPACING O<br>SIFIED<br>INCTION BOX, NUMBEI<br>ER OF CAT 6 CABLES T<br>ATIONS OUTLET<br>NEMA 5-20R | F  | G<br>G<br>G<br>G<br>T<br>FACP<br>F<br>GR<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G | -G- GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GROU<br>GR | UIT SIZE AS SPECIF<br>P: POWER<br>C: CONTROL<br>S: SIGNAL<br>ND CABLE<br>ND ROD<br>EST WELL<br>MOSTAT<br>LARM CONTROL P.<br>LARM CONTROL P.<br>LARM CONTROL R.<br>LARM CONTROL R.<br>LARM CONTACT, F<br>LARM CONTACT, F<br>LARM CONTACT, P<br>E AND DUCT DETEC<br><u>SRIPT:</u><br>ZATION TYPE<br>DTOELECTRIC TYPE<br>DTOELECTRIC TYPE<br>DTOELECTRIC TYPE<br>DETECTOR<br><u>SRIPT:</u><br>LATE COMPENSATI<br>OMBINATION RATE<br>D FIXED TEMP<br>TE OF FISE<br>ED | AND CAPPED<br>T NUMBER - WIRE AND<br>IED:<br>ANEL<br>LL STATION<br>ELAY<br>LOW SWITCH<br>RESSURE SWITCH<br>RESSURE SWITCH<br>ELAN<br>CTOR<br>E                                 | С |
| ATIONS OUTLET                                                                                                                                                                                                               | 10 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                   | SUBSI<br>R/C - F<br>R/F - C<br>AN<br>R - RA<br>F - FIX<br>ALARI<br>ALARI<br>ALARI<br>COMB<br>ALARI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRIPT:<br>CATE COMPENSATI<br>OMBINATION RATE<br>DE FIXED TEMP<br>TE OF RISE<br>ED<br>M BELL<br>M HORN<br>M FLASHING LIGHT<br>M BELL AND FLASH<br>INATION UNIT<br>M HORN AND FLASH<br>INATION UNIT                                                                                                                                                                                                                                                                 | OF RISE<br>NG LIGHT                                                                                                                                                            | В |
| S IN 3/4°C UNLESS<br>AREAS;<br>/ FINISHED AREAS.<br>SHALL BE THE<br>CIRCUIT.<br>CONCEALED IN<br>AREAS, DIRECT<br>20NDUIT AND                                                                                                |    | NOT BE<br>2. IN GENE<br>CONTRA<br>INCLUDI<br>SPECIFI<br>ROUTIN                                                                | NONE<br>F - FIR<br>CONDL<br>DIES:<br>A STANDARD ELL<br>USED ON THIS P<br>IRAL CONDUIT R<br>CATOR SHALL BE<br>NG THOSE SHOW<br>CATIONS FOR CC<br>CATIONS FOR CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - GENERAL ALARM<br>E ALARM DEVICE<br>LET<br>CTRICAL SYMBOL:<br>ROJECT.<br>DUTING IS NOT SHI<br>RESPONSIBLE FOI<br>VN ON ONE-LINES ;<br>DODUIT INSTALLAT<br>LOCATIONS THAT                                                                                                                                                                                                                                                                                         | S SHEET, ALL SYMBOLS N<br>DWN ON THE PLANS. THE<br>R ROUTING ALL CONDUIT<br>ND HOME RUNS. SEE<br>ON REQUIREMENTS. COI<br>ARE SHOWN ARE                                         | s |
| CATED): LONG,<br>CATED): LONG,<br>DOT REPRESENT<br>DUND, AND<br>ESPECTIVELY. #12<br>SE INDICATED.                                                                                                                           | LE | EQUIPM<br>3. WHEN E<br>CONTRY<br>CONDU<br>THE SAI<br>4. SCREEN<br>COMPO<br>HIGHLIG<br>DRAWIN<br>5. SEE PRI<br>AND AB          | ENT FURNISHED<br>IRANCH CIRCUIT<br>ICTORS REQUIRE<br>WE AS THE HOME<br>UNG OR SHADINI<br>NENTS OR TO DE<br>UNG OR SHADINI<br>NENTS OR TO DE<br>ING FOR USAGE.<br>DJECT EQUIPMEI<br>BREVIATIONS SP<br>ELECC<br>YMBOLS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , FREE OF ANY INTI<br>S ARE NOT SHOWN<br>RNISH AND INSTAL<br>D. CONDUIT AND C<br>RUN FOR THE BRA<br>G OF WORK IS USE<br>E-EMPHASIZE PROF<br>RADE WORK. REFE<br>NT AND PIPING SYS<br>ECIFIC TO THE PRO<br>TRICAL                                                                                                                                                                                                                                                   | ON THE PLANS THE<br>LALL CONDUITS AND<br>DNDUCTOR SIZES SHALL<br>NCH CIRCUIT.<br>D TO INDICATE EXISTING<br>OSED IMPROVEMENTS T<br>R TO CONTEXT OF EACH<br>TEMS DRAWING FOR SYI | 0 |
|                                                                                                                                                                                                                             | 0  | 1"                                                                                                                            | 2" FILENAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                              | сянеет<br>Е01                                                                                                                                                                  | 1 |
|                                                                                                                                                                                                                             |    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |   |



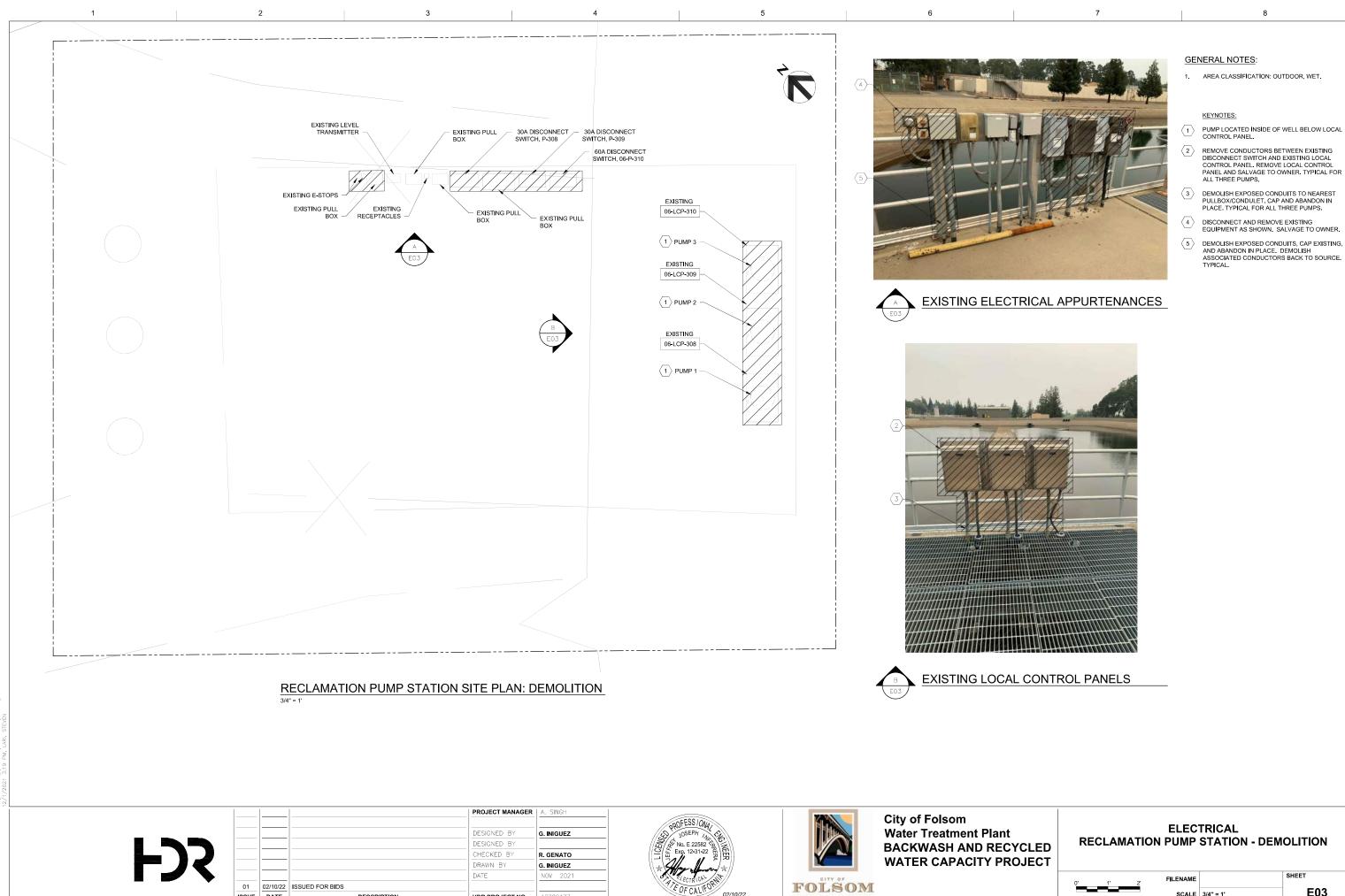
DATE

PROJECT NUMBER

01 02/10/22 ISSUED FOR BIDS

DESCRIPTION

NOV 2021


10292477

City of Folsom Water Treatment Plant BACKWASH AND RECYCLED WATER CAPACITY PROJECT

FOLSOM

02/10/22

| 7                   |      | 8                                                                                                                                                                                                                                                          |                                                                                                       |   |
|---------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---|
|                     |      | KEYNOTES:<br>DEMOLISH CONDUCTORS BE<br>UMPS P-308, P-309, AND P-3<br>DEMOLISH EXPOSED CONDUI<br>ABANDON EXISTING EMBEDD<br>REMOVE EXISTING 18 HP REC<br>NUD 60A DISCONNECT SWITC<br>DWNER.<br>REMOVE EXISTING RECLAMA<br>STARTER BUCKETS FROM MC<br>DWNER. | 10 AND MCC A1.<br>ITS. CAP AND<br>IED CONDUITS.<br>CLAMATION PUMP<br>H. SALVAGE TO<br>TION PUMP MOTOR | D |
|                     |      |                                                                                                                                                                                                                                                            |                                                                                                       | с |
|                     |      |                                                                                                                                                                                                                                                            |                                                                                                       |   |
|                     |      |                                                                                                                                                                                                                                                            |                                                                                                       | В |
|                     |      |                                                                                                                                                                                                                                                            |                                                                                                       |   |
|                     |      |                                                                                                                                                                                                                                                            |                                                                                                       | А |
| EXISTING MCC 1A ONE |      | TRICAL<br>NE DIAGRAM - I                                                                                                                                                                                                                                   | SHEET                                                                                                 |   |
|                     | CALE | NONE                                                                                                                                                                                                                                                       | E02                                                                                                   |   |
|                     |      | 1                                                                                                                                                                                                                                                          |                                                                                                       | l |



02/10/22

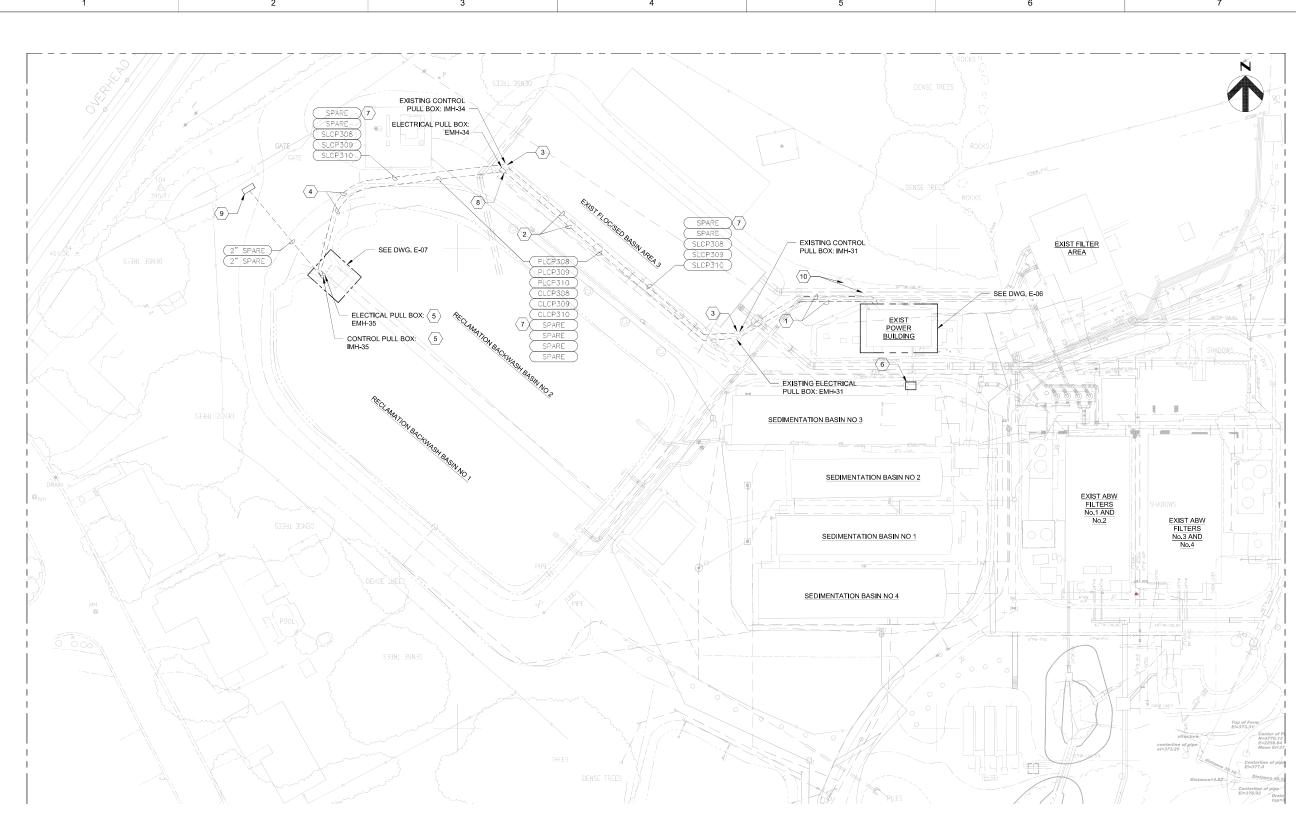
STINCTIVE BY NATUR

ISSUE DATE

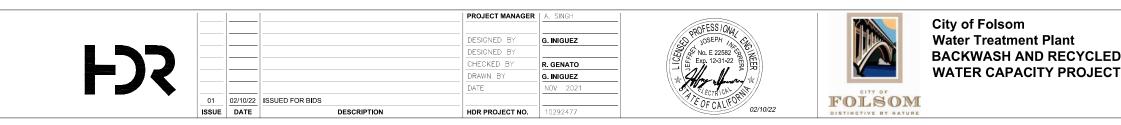
DESCRIPTION

HDR PROJECT NO.

10292477


# **RECLAMATION PUMP STATION - DEMOLITION**

SCALE 3/4" = 1'


E03

D

С

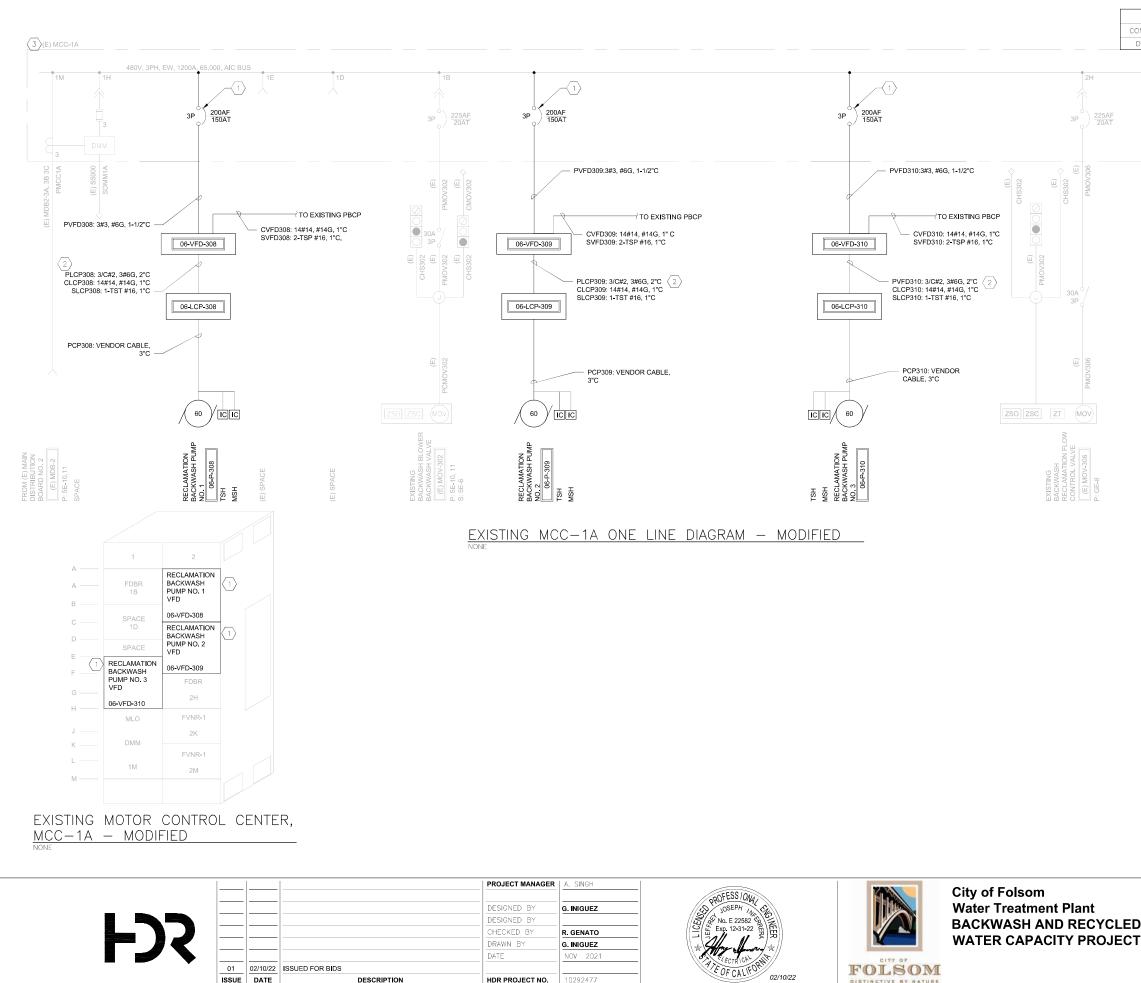


OVERALL ELECTRICAL SITE PLAN



pwworking\west01\d2063692\E04.dwg

#### GENERAL NOTES: 1. AREA CLASSIFICATION: OUTDOOR, WET. 1. INSTALL DUCT BANK PER DETAIL 1 ON DWG, E09. CONTRACTOR TO FIELD ROUTE DUCT BANKS FROM POWER BUILDING TO EXISTING PULL BOXES IMH-31 AND EMH-31. REFILL AND REPAIR GROUND TO MATCH EXISTING PULL BOXES IMH-31 AND EMH-31 TO EXISTING PULL BOXES IMH-31 AND EMH-31 TO EXISTING PULL BOXES IMH-34 AND EMH-34 TO EXISTING AS REQUIRED INSTALL PER DETAIL 2 ON DWG. E09. 3 DUCTBANK TO INTERCEPT EXISTING ASPHALT PER DETAIL 2 ON DWG. C02. MATCH EXISTING PAVING. SAW CUT EXISTING ASPHALT PAVING TO INSTALL PULCED ASF TO EXISTING ASPHALT PER DETAIL 2 ON DWG. E09. 5 PROVIDE 36"WX36"L MINIMUM, PRECAST CONCRETE PULL BOX, H-20 RATED WITH STEEL COVERS. STEEL COVERS SHALL BE ENGRAVED WITH THE WORD "ELECTRICAL" FOR EMH-35 AND "CONTROLS" FOR IMH-35 DONE DECAUL SON DWG. E09.


D

С

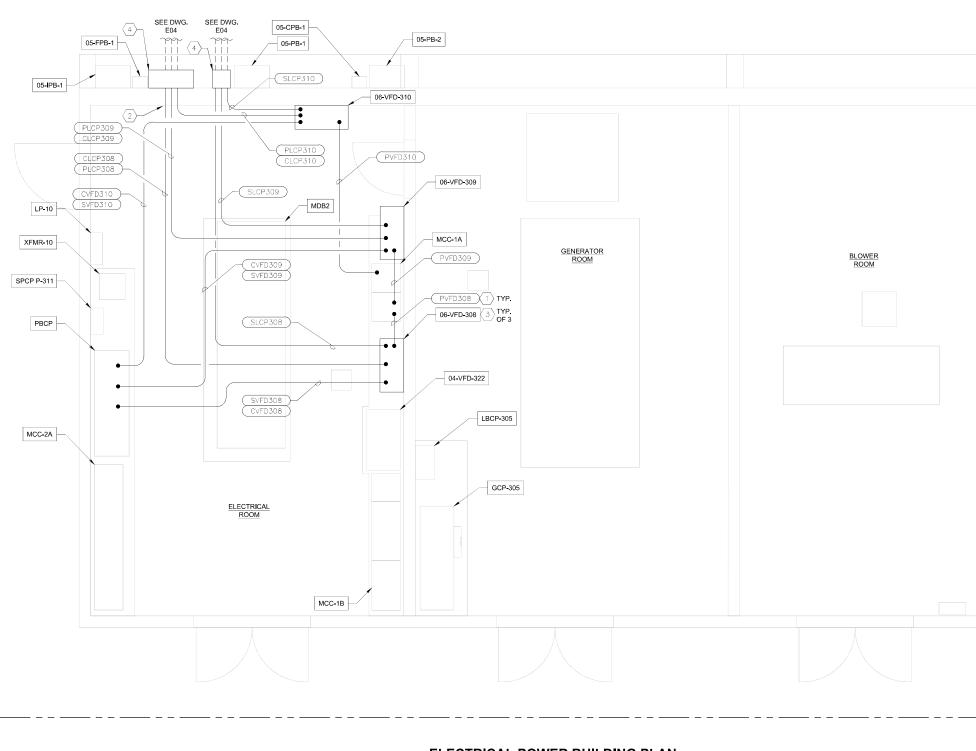
- 6 LOCATION OF EXISTING MAG FLOW METER. REFER TO DRAWING 102 FOR INSTRUCTION ON WORK TO BE DONE ON THE FLOW METER.
- PROVIDE TWO 2" SPARE CONDUITS FOR SIGNALS, TWO 2" SPARE CONDUITS FOR CONTROL, AND TWO 2" SPARE CONDUITS FOR POWER. ROUTE SPARE CONDUITS FOM POWER. ROUTE SPARE CONDUITS FROM POWER SUILDING TO PULL BOXES IMH-35 AND EMH-35. PROVIDE PULL TAPE, CAP CONDUITS AT EVERY PULL POX.
- (8)
   REMOVE EXISTING ELECTRICAL PULL BOX, EMH-34 AND SALVAGE TO OWNER. PROTECT EXISTING CONDUITS AND CONDUCTORS. INSTALL IN THE SAME LOCATION WITH A 36°WX36°L MINIMUM PRECAST CONCRETE PULL BOX. PROVIDE STEEL COVER. STEEL COVER SHALL BE ENGRAVED WITH THE WORD "ELECTRICAL". MATCH DEPTH OF PULL BOX TO EXISTING CONTROL PULL BOX IMH-34. INSTALL PER DETAIL 6 ON DWG, E09.
- (9) INSTALL A N17 CHRISTY BOX 12" FROM THE FENCE POST.
- (10) EXISTING DUCTBANKS MAY BE PRESENT IN THIS AREA, CONTRACTOR TO FIELD VERIFY.

A

nt CYCLED PROJECT



5


3

1

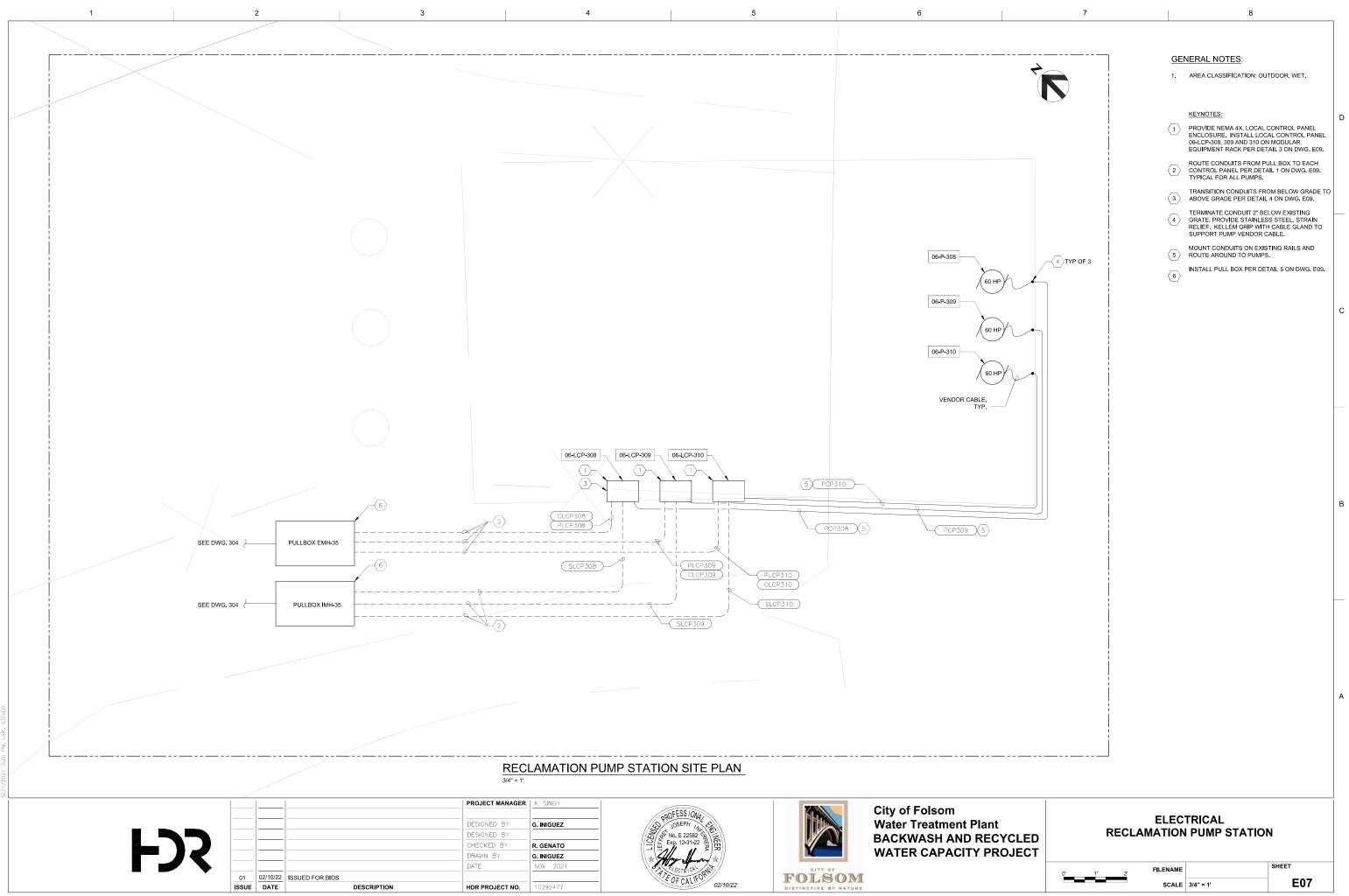
8 KVA AMPS 204.3 245.7 CONNECTED 204.3 DEMAND 245.7 KEYNOTES: PROVIDE 200AF/150AT CIRCUIT BREAKERS AND INSTALL IN THE SAME LOCATION AS EXISTING (1) D MOTOR STARTER. MCP 3 MCF PROVIDE VFD CABLE FROM VFD TO LOCAL CONTROL PANEL. TYPICAL FOR ALL THREE  $\langle 2 \rangle$ PUMPS. EXISTING MCC-A1 IS A ALLEN-BRADLEY, CENTERLINE SERIES. CONTRACTOR TO PROVIDE CIRCUIT BREAKERS THAT ARE COMPATIBLE WITH EXISTING MCC.  $\langle 3 \rangle$ E E С (3/4) в А ELECTRICAL **EXISTING MCC 1A ONE LINE DIAGRAM - MODIFIED** SHEET FILENAME E05 SCALE NONE

|       |          |                 |                 | the more set of the se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|----------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |          |                 | PROJECT MANAGER | A. SINGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIRE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |          |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BROFESS / ONA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | City of Folsom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |          |                 | DESIGNED BY     | G. INIGUEZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JOSEPH IN CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Water Treatment Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |          |                 | DESIGNED BY     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | // G/ & NO. E 22502 / G Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>BACKWASH AND REC</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |          |                 | CHECKED BY      | R. GENATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |          |                 | DRAWN BY        | G. INIGUEZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + Almer the man the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATER CAPACITY PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |          |                 | DATE            | NOV 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELECTRICH ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CITY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 01    | 02/10/22 | ISSUED FOR BIDS |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E OF CALIFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FOLSOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ISSUE | DATE     | DESCRIPTION     | HDR PROJECT NO. | 10292477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02/10/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISTINCTIVE BY NATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |          |                 |                 | Image: Constraint of the second sec                        | Image: Checked by Che | Image: Constraint of the second se | Image: Designed BY     Designed BY       Image: Design |

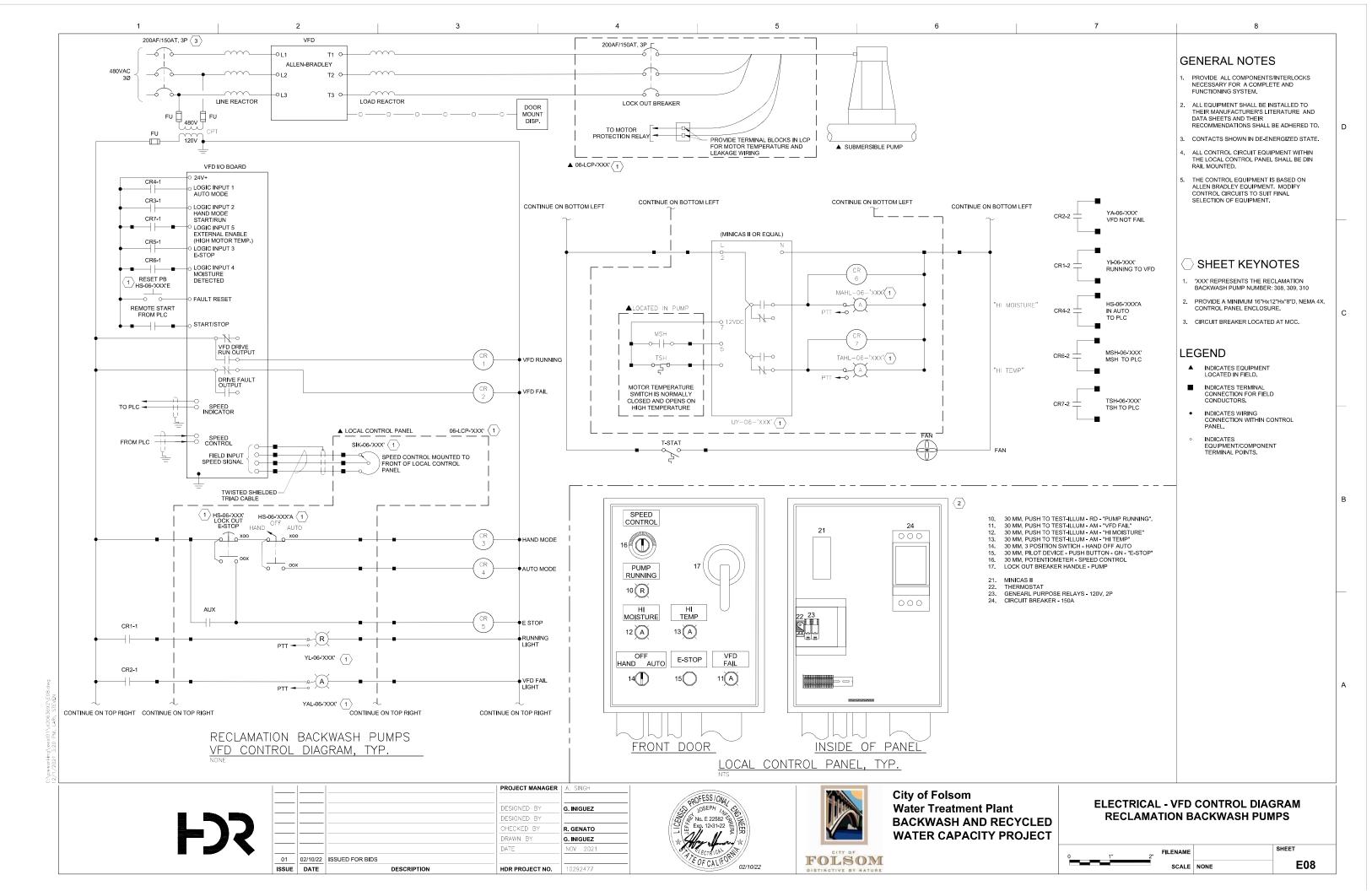
ELECTRICAL POWER BUILDING PLAN

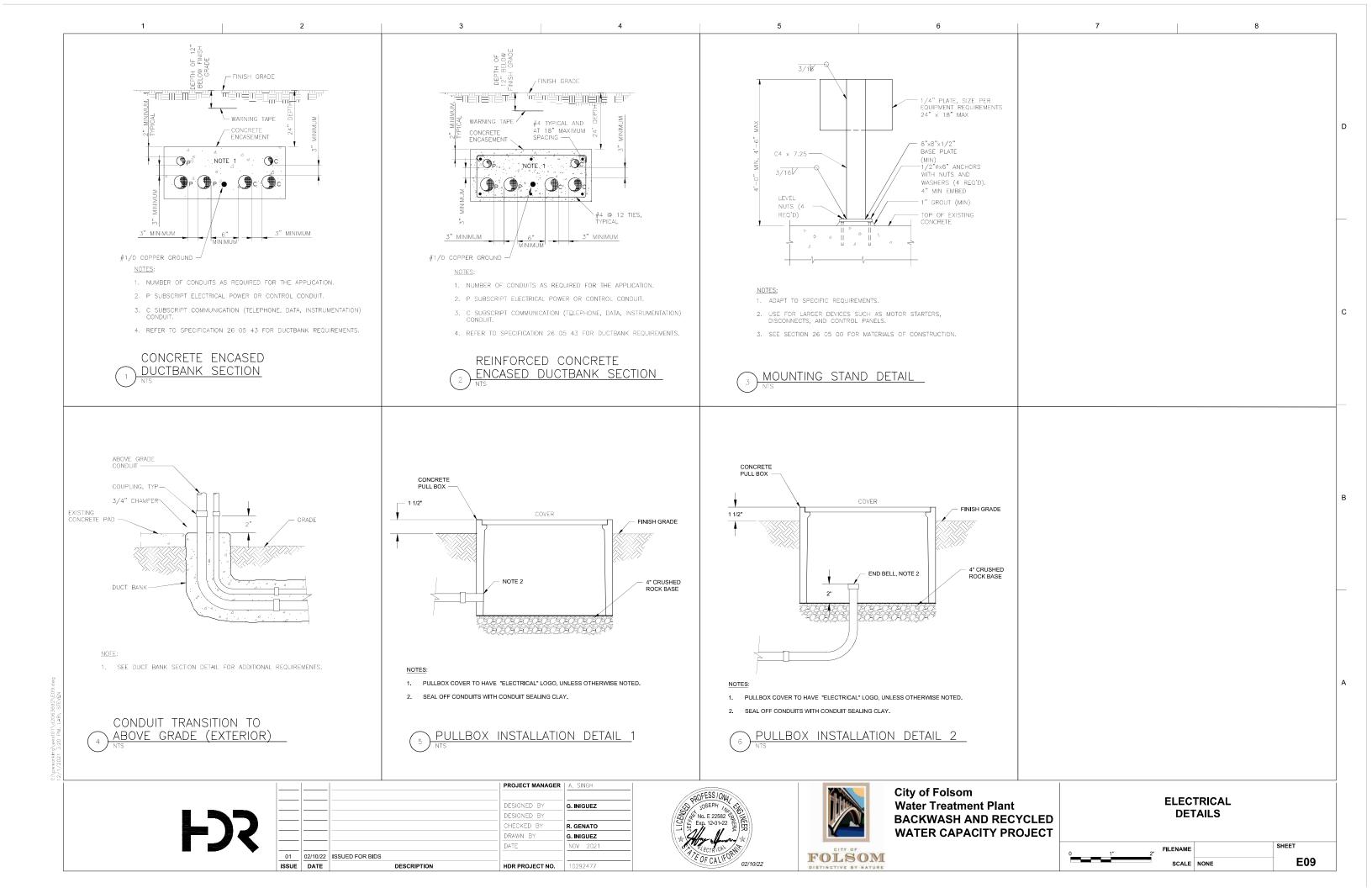


4


5

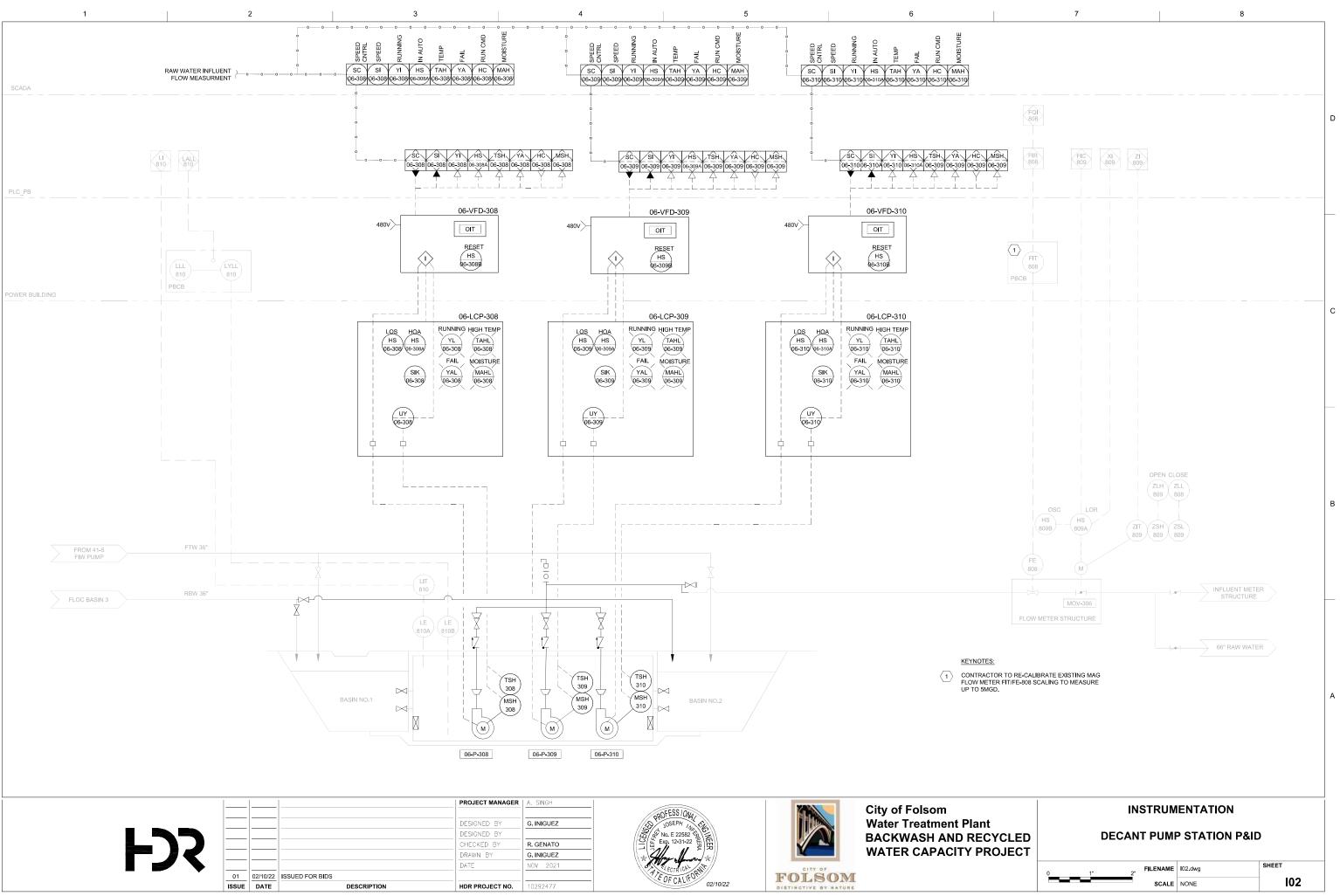
6


1


2

|       | 7 |   | 8                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                |
|-------|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |   |   | GENERAL NOTES:                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |
|       | N |   | 1. AREA CLASSIFICATION: IN                                                                                                                                                                                                                                                                                                                                                                    | IDOOR, DRY.                                                                                                                                                    |
|       |   |   | KEYNOTES:           1         ROUTE ALL CONDUITS INSI<br>OVERHEAD.           2         CORE DRILL AND ROUTE C<br>OUTSIDE. CORE DRILL FOR<br>AND CAP CONDUTS, SEAL<br>CONDUITS, WITH NON-SHR<br>OUTSIDE AND INSIDE OF W<br>EXISTING. TYPICAL FOR AL           3         WALL MOUNT VFD SUCH TI<br>A MIN OF 48 IN ABOVE FINI<br>MOUNT VFD PER MANUFAC<br>RECOMMENDATIONS. TYPI<br>309, AND 310. | ONDUITS TO PULL BOX<br>SPARE CONDUITS<br>GAP AROUND<br>INK GROUT. PAINT<br>ALL TO MATCH<br>L CONDUITS.<br>HAT CENTER OF VFD IS<br>SHED FLOOR. WALL<br>JTURER'S |
|       |   |   | INSTALL A 30"L X 30"W X 12<br>POWER AND CONTROLS AI<br>12"D FOR SIGNAL. PULL BO<br>4X. INSTALL AT SAME HEIG<br>BOXES. PULL BOXES SHAL<br>FRONT COVER.                                                                                                                                                                                                                                         | ND A 12"L X 12"W X<br>DXES SHALL BE NEMA<br>SHT OF EXISTING PULL                                                                                               |
|       |   |   |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|       |   | 1 |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|       |   |   |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|       |   |   |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|       |   |   |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|       |   |   |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|       |   |   |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|       |   |   |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
| YCLED |   |   |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |










| Γ                   |                              |                                                                                                          |                                       |                                            |                                   |                                     | -RS                                 |                                                                            | 5<br>L SWITCH NOT                       |            |                    | <sup>6</sup> PROCESS A                                                   |
|---------------------|------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|------------|--------------------|--------------------------------------------------------------------------|
| F                   | $\frown$                     |                                                                                                          |                                       |                                            |                                   |                                     |                                     |                                                                            | BREVIATIONS                             | ATION      | 3W                 |                                                                          |
|                     | $\bigcirc$                   | LOCALLY MOUNTED FIELD INSTRUMENTATION                                                                    | MEASURED OR<br>INITIATING<br>VARIABLE | MODIFIER                                   | READOUT OR<br>PASSIVE<br>FUNCTION |                                     |                                     |                                                                            | ACKNOWLEDGE                             |            | ABI A              | NON-CHLORINATED PLANT WATE<br>AERATION BASIN INFLUENT<br>ANALOG INPUT    |
|                     | $\ominus$                    | MOUNTED ON PANEL FRONT                                                                                   | A ANALYSIS<br>BURNER,                 |                                            | ALARM                             |                                     |                                     | FAIL<br>FOR<br>FR                                                          | FAILURE<br>FORWARD-OFF-<br>FORWARD-REVI | REVERSE    | BNR BSCR B         | ANALOG OUTPUT<br>BIOLOGICAL NITROGEN REMOVAI<br>BANDSCREEN               |
|                     | (-)                          | MOUNTED INSIDE PANEL                                                                                     | <sup>B</sup> COMBUSTION               |                                            |                                   |                                     |                                     | FS<br>HA                                                                   | FAST-SLOW<br>HAND-AUTO                  |            | CA                 | BYPASS<br>COMPRESSED AIR<br>CHEMICAL DRAIN                               |
|                     | $\sim$                       |                                                                                                          | C                                     | DIFFERENTIAL                               |                                   | CONTROL                             | CLOSED                              | HOA<br>HOR                                                                 | HAND-OFF-AUTO<br>HAND-OFF-REM           |            | CL2                | CHEMICAL DRAIN<br>CHLORINE (ANALYZER MODIFIER)<br>CHLORINE SOLUTION      |
|                     | $\left( \rightarrow \right)$ | FRONT PANEL MOUNTED ON AUXILIARY PANEL<br>(SUBSCRIPT INDICATES PANEL)                                    |                                       | DITERENTIAL                                | SENSOR (PRIMA                     |                                     |                                     | HSE                                                                        | EMERGENCY ST                            |            | CMP                | CHLORINE SOLUTION<br>COMPACTOR<br>CONDENSER                              |
|                     | $\bigcirc$                   |                                                                                                          | E VOLTAGE                             |                                            | ELEMENT)                          |                                     |                                     | LL<br>LLS                                                                  | LEAD-LAG<br>LEAD-LAG-STAN               |            | COND               | CONDUCTIVITY (ANALYZER MODI                                              |
|                     |                              | MOUNTED INSIDE AUXILIARY PANEL                                                                           | F FLOW RATE                           | RATIO (FRACTION)                           |                                   |                                     |                                     | LOR<br>LR                                                                  | LOCAL-OFF-REN<br>LOCAL-REMOTE           |            | CSL                | CONTACT STABILIZATION<br>CAUSTIC SOLUTION                                |
|                     | $\sim$                       | PILOT LIGHT                                                                                              | G                                     |                                            | GLASS, VIEWING<br>DEVICE          |                                     |                                     | LS<br>MA                                                                   | LEAD-STANDBY<br>MANUAL-AUTO             |            | D                  | CITY WATER<br>DRAIN<br>DENSITY                                           |
|                     | $\searrow$                   |                                                                                                          | H HAND                                |                                            |                                   |                                     | HIGH                                | OAC<br>OC                                                                  | OPEN-AUTO-CLO<br>OPEN-CLOSE             | OSE        | DG I               | DENSITY<br>DIGESTER GAS<br>DIGITAL INPUT                                 |
|                     | $\bigcap$                    | INSTRUMENT FUNCTIONS SHARING COMMON                                                                      | I CURRENT<br>(ELECTRICAL)             |                                            | INDICATE                          |                                     |                                     | OO<br>OSC                                                                  | ON-OFF<br>OPEN-STOP-CLO                 | OSE        | DO                 | DIGITAL OUTPUT<br>DISSOLVED OXYGEN (ANALYZER                             |
|                     | $\bigcirc$                   | HOUSING                                                                                                  | J POWER                               | SCAN                                       |                                   |                                     |                                     | RJ<br>RJR                                                                  | RUN-JOG<br>RUN-JOG-REVEI                | RSE        | DS I               | DIGESTED SLUDGE                                                          |
|                     | $\langle i \rangle$          | COMPLEX INTERLOCK AS DEFINED IN CONTROL<br>DIAGRAM OR IN SPECIFICATIONS                                  | K TIME, TIME<br>SCHEDULE              | TIME; RATE OF<br>CHANGE                    |                                   | CONTROL STATIO                      | N                                   | SIL                                                                        | SILENCE                                 |            | FA F               | FOUL AIR<br>FLOOR DRAIN                                                  |
|                     | $\square$                    |                                                                                                          | L LEVEL                               | CHANGE                                     | LIGHT                             |                                     | LOW                                 |                                                                            | ND GATE SYMBO                           | DLOGY      | - FF               | FILTER EFFLUENT<br>FILTER FEED                                           |
|                     | $\bigcirc$                   | SHARED DISPLAY, SHARED CONTROL,<br>FIELD MOUNTED                                                         |                                       |                                            |                                   |                                     | MIDDLE,                             | Ъx                                                                         | AIR-RELEASE VACUUM VAL                  | VE         | FW                 | FUEL OIL<br>FEED WATER                                                   |
|                     | $\square$                    | SHARED DISPLAY, SHARED CONTROL AT                                                                        | M                                     | MOMENTARY                                  |                                   |                                     | INTERMEDIATE                        | Ō                                                                          | ARV = AIR RELEASE VALVE<br>VAC = VACUUM |            | GTSL               | GRIT<br>GRAVITY THICKENED SLUDGE                                         |
|                     |                              | PRIMARY LOCATION - NORMALLY ACCESSIBLE<br>TO OPERATOR (SCADA WORKSTATION)                                | N                                     |                                            | ORIFICE,                          |                                     |                                     |                                                                            | BV - BALL VALVE                         |            | HW                 | HIGH PRESSURE AIR<br>HOT WATER                                           |
|                     |                              |                                                                                                          | 0                                     |                                            | RESTRICTION                       |                                     |                                     | 101                                                                        |                                         |            | HWS                | HOT WATER RETURN<br>HOT WATER SUPPLY<br>INPUT/OUTPUT                     |
|                     | $\left( \rightarrow \right)$ | SHARED DISPLAY, SHARED CONTROL AT<br>AUXILLIARY LOCATION - NORMALLY ACCESSIBLE<br>TO OPERATOR (IPC, HMI) | P PRESSURE,<br>VACUUM                 |                                            | POINT (TEST)<br>CONNECTION        |                                     |                                     |                                                                            | BFV - BUTTERFLY VALVE                   |            | I/P                | CURRENT TO PNEUMATIC                                                     |
|                     |                              |                                                                                                          | Q QUANTITY                            | INTEGRATE,<br>TOTALIZE                     |                                   |                                     |                                     | $-\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | CNV - CONE VALVE                        |            | LCP                | LOCAL CONTROL PANEL                                                      |
|                     |                              | PROGRAMMABLE LOGIC CONTROL, PRIMARY<br>LOCATION - NORMALLY INACCESSIBLE TO                               | R RADIATION                           |                                            | RECORD                            |                                     |                                     |                                                                            | CV - CHECK VALVE                        |            | LOX                | LIQUID OXYGEN<br>LOW PRESSURE AIR                                        |
|                     |                              | OPERATOR                                                                                                 | S SPEED,<br>FREQUENCY                 | SAFETY                                     |                                   | SWITCH                              |                                     |                                                                            | DDCV - DOUBLE-DISK CHEC                 |            | LSG                | LOW PRESSURE DIGESTER AIR<br>LOW PRESSURE SLUDGE GAS                     |
| F                   | PRI                          | MARY ELEMENT SYMBOLOG                                                                                    | Y T TEMPERATURE                       |                                            |                                   | TRANSMIT                            |                                     |                                                                            |                                         |            | ML                 | MURIATIC ACID<br>MIXED LIQUOR                                            |
| F                   |                              |                                                                                                          | U MULTIVARIABLE                       |                                            | MULTIFUNCTION                     |                                     | MULTIFUNCTION                       | ko                                                                         | BCV - BALL CHECK VALVE                  |            | N2                 | MIXER<br>NITROGEN GAS                                                    |
|                     |                              | <ul> <li>MAGNETIC FLOWMETER</li> </ul>                                                                   | V VIBRATION, MECH.<br>ANALYSIS        |                                            |                                   | VALVE DAMPER,<br>LOUVER             |                                     |                                                                            | DV - DIAPHRAGM VALVE                    |            | NG                 | NORMALLY CLOSE<br>NATURAL GAS<br>NORMALLY OPEN                           |
|                     | $\sim$                       | - FLUME                                                                                                  | W WEIGHT, FORCE                       |                                            | WELL                              |                                     |                                     | $\longrightarrow$                                                          | GV - GATE VALVE                         |            |                    | OVERFLOW                                                                 |
|                     | TE                           |                                                                                                          | X EVENT, STATE OR                     | X-AXIS                                     |                                   | RELAY, COMPUTE                      |                                     | <b>X</b>                                                                   | GLV - GLOBE VALVE                       |            |                    | LINE TYPES                                                               |
|                     |                              | TEMPERATURE ELEMENT WITH THERMOWELL                                                                      | Y PRESENCE                            | Y-AXIS                                     |                                   | CONVERT                             |                                     | .П.                                                                        |                                         |            |                    |                                                                          |
|                     | $\bigcirc$                   |                                                                                                          | POSITION,                             | Z-AXIS                                     |                                   | DRIVER,<br>ACTUATOR<br>UNCLASSIFIED |                                     |                                                                            | KGV - KNIFE GATE VALVE                  |            |                    | - MAIN PROCESS LINE                                                      |
|                     | (FG)                         | - SIGHT FLOW GLASS                                                                                       |                                       | 2-000                                      |                                   | FINAL CONTROL<br>ELEMENT            |                                     | ⊽                                                                          | NV - NEEDLE VALVE                       |            |                    | <ul> <li>SECONDARY PROCESS LI</li> <li>AUXILIARY PROCESS LINE</li> </ul> |
|                     | $\bigcirc$                   | CHEMICAL SEAL                                                                                            | ACTUATOR                              | SYMBOLO                                    |                                   | ES OF POW                           | ER SUPPLY                           | ¥                                                                          | PNV - PINCH VALVE                       |            |                    | DIRECTION OF FLOW                                                        |
|                     |                              |                                                                                                          |                                       |                                            |                                   |                                     |                                     | I \$                                                                       | PV - PLUG VALVE                         |            |                    | PNEUMATIC SIGNAL                                                         |
|                     |                              |                                                                                                          |                                       | ERATOR ABBREVIATI                          | DNS: A                            | PLANT C                             | OMPRESSED AIR                       |                                                                            | PRV - PRESSURE-REDUCIN                  | IG VALVE   |                    | ELECTRICAL SIGNAL                                                        |
|                     |                              | SUBMERSIBLE PUMP                                                                                         | F F                                   | M = MOTOR<br>P = PNEUMATIC<br>S = SOLENOID | ES                                |                                     | CAL SUPPLY                          |                                                                            |                                         |            | P                  | - 480V POWER                                                             |
|                     | <br>۲                        |                                                                                                          |                                       | DAT OPERATOR                               | HYD                               |                                     |                                     |                                                                            | PRV - PRESSURE-REGULAT                  | ING VALVE  | L                  | HYDRAULIC SIGNAL                                                         |
|                     |                              |                                                                                                          |                                       | RING-OPPOSED                               |                                   | AC > 120VAC                         | POWER                               | -12 OR -124-                                                               | PRV - PRESSURE-RELIEF V                 | ALVE       | oo                 | - SOFTWARE OR DATA LIN                                                   |
|                     | <u> </u>                     |                                                                                                          |                                       | IGLE-ACTING<br>EUMATIC CYLINDER            |                                   | 480 - 480VAC                        | POWER                               |                                                                            | TWCV - THREE-WAY CONT                   |            |                    | - SIGNAL CONNECTION                                                      |
|                     |                              | <u>_</u>                                                                                                 |                                       | UBLE-ACTING                                |                                   | DC > 24VDC P                        | OWER                                |                                                                            |                                         |            | I.                 |                                                                          |
|                     | $\geq$                       | CENTRIFUGAL PUMP                                                                                         |                                       | EUMATIC CYLINDER                           |                                   |                                     | 4050                                |                                                                            | Y-STRAINER                              |            | 1                  | - CROSSOVER - NO CONNE                                                   |
| 1.dwg               |                              |                                                                                                          |                                       | EUMATIC DIAPHRAGN                          |                                   | PLC INTERF                          | ACES                                | ,<br>+~+                                                                   | FLEX COUPLING                           |            | x                  | CAPILLARY                                                                |
| 02\I0<br>TEVEN      |                              | VERTICAL TURBINE PUMP                                                                                    |                                       |                                            | •                                 | ANIAL 0.0                           |                                     |                                                                            | FLEX COUPLING                           |            | ••                 | MECHANICAL LINK                                                          |
| 20636<br>ARI, S     | ط<br>~                       |                                                                                                          |                                       | EUMATIC DIAPHRAGN<br>TH POSITIONER         |                                   | ANALOG<br>INPUT<br>(4-20mA DC)      | ANALOG<br>OUTPUT<br>(4-20mA DC)     | Ď                                                                          | DRAIN                                   |            | — E — E —          | - ETHERNET I/O DATA LINK                                                 |
| PM, 1               |                              | METERING PUMP                                                                                            |                                       |                                            |                                   | (                                   | (                                   | S                                                                          | SOLENOID VALVE                          |            | — D — D —          | DEVICENET DATA LINK                                                      |
| ng\we<br>3:25       | L II                         |                                                                                                          |                                       |                                            | Ą                                 | DISCRETE                            | DISCRETE                            | X                                                                          | ROTAMETER WITH BALL                     |            | — s — s —          | SERIAL RS232 LINK                                                        |
| vpwworki<br>/1/2021 |                              | GATE                                                                                                     |                                       |                                            |                                   | INPUT<br>(24VDC) T                  | OUTPUT<br>(DRY CONTACT<br>7 120VAC) |                                                                            | INDICATOR AND FLOW<br>ADJUSTMENT        |            | — FO — FO —        | - FIBER OPTIC                                                            |
| 15 g<br> <br>       |                              |                                                                                                          | <br>                                  |                                            |                                   | PROJECT MANAGER                     | A. SINGH                            |                                                                            |                                         |            | City of            | Folcom                                                                   |
|                     |                              |                                                                                                          |                                       |                                            |                                   | DESIGNED BY                         | G. INIGUEZ                          | PROFES                                                                     | SIONAL ST                               | <b>HIM</b> | City of<br>Water 1 | Foisom<br>Freatment Plant                                                |
|                     |                              |                                                                                                          |                                       |                                            |                                   | DESIGNED BY                         | _                                   |                                                                            | 22582 12 3                              |            |                    | VASH AND RECY                                                            |
|                     |                              | FSS                                                                                                      |                                       |                                            |                                   | DRAWN BY                            | R. GENATO<br>G. INIGUEZ             |                                                                            | S S                                     | Y          |                    | R CAPACITY PRO                                                           |
|                     |                              |                                                                                                          |                                       |                                            |                                   | DATE                                | NOV 2021                            |                                                                            | PICAL BUILT                             |            |                    |                                                                          |
|                     |                              |                                                                                                          | 01 02/10/22 ISSUED FOR BIDS           | DESCRIPTION                                |                                   | HDR PROJECT NO.                     | 10292477                            | - EOFC                                                                     | ALIFON 02/10/22                         | FOLSO      |                    |                                                                          |

|                              | 7 8                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| S AND INS                    | TRUMENTATION ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| TER<br>T WATER<br>T<br>MOVAL | OF     OVERFLOW       OG     OFF GAS       OI     OPERATOR INTERFACE       P&ID     PROCESS AND INSTRUMENTATION DIAGRAM       PD     PLANT DRAIN       PE     PRIMARY EFFLUENT       PERM     PERMARY EFFLUENT       PI     PRIMARY INFLUENT       PSC     PRIMARY SCUM       PMP     PUMP                                                                                                                                     | D   |
| DIFIER)                      | PMP PUMP<br>POL POLYMER<br>POTW POTABLE WATER<br>PS PRIMARY SLUDGE<br>PW PLANT WATER<br>RAS RETURN ACTIVATED SLUDGE                                                                                                                                                                                                                                                                                                            |     |
| R MODIFIER)                  | REC     RECIRCULATION       RS     RAW SEWAGE       RW     RECLAIMED WATER       SAM     SAMPLE       SBS     SODIUM BISULFATE       SC     SCUM       SCR     SCRENINGS       SD     SANITARY DRAIN                                                                                                                                                                                                                           |     |
| LYZER MODIFIER)              | SE         SECONDARY EFFLUENT           SEW         SEWER           SHC         SODIUM HYPOCHLORITE           SI         SECONDARY INFLUENT           SLG         SLIDE GATE, SLUICE GATE           SN         SUPERNATANT           SO         SLOPE OIL           SOD         SLOPE OIL           SOD         SLOPE OIL DRAIN           SS         SUSPENDED SOLIDS (ANALYZER MODIFIER)           SWR         SOFTENED WATER |     |
| DGE                          | T     TANK       TS     THICKENED SLUDGE       TURB     TURBIDITY (ANALYZER MODIFIER)       TWAS     THICKENED WASTE ACTIVATED SLUDGE       V     VENT       VCP     VENDOR CONTROL PANEL       WAS     WASTE ACTIVATED SLUDGE       WW     WASH WATER                                                                                                                                                                         | с   |
| R AIR<br>GAS                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ES                           | CROSS REFERENCE SYMBOLOGY                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| NE<br>CESS LINE              |                                                                                                                                                                                                                                                                                                                                                                                                                                | В   |
| SS LINE                      |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| L                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| AL                           | P1 A CONTINUATION TO DRAWING                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|                              | GENERAL NOTES                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| TA LINK<br>ON                | 1. THIS IS A STANDARD INSTRUMENTATION SYMBOLOGY AND<br>ABBREVIATIONS SHEET. LISTING OF SYMBOLS AND ABBREVIAT<br>DOES NOT IMPLY ALL SYMBOLS AND ABBREVIATIONS HAVE BE                                                                                                                                                                                                                                                           |     |
| CONNECTION                   | USED ON THIS PROJECT.<br>2. SEE PROCESS, MECHANICAL AND PLUMBING LEGEND DRAWIN<br>FOR MISCELLANEOUS PIPING SYMBOLS.                                                                                                                                                                                                                                                                                                            | GS  |
|                              | <ol> <li>SCREENING OR SHADING OF WORK IS USED TO INDICATE EXIS<br/>COMPONENTS OR TO DE-EMPHASIZE PROPOSED IMPROVEMENT<br/>TO HIGHLIGHT SELECTED TRADE WORK. REFER TO CONTEXT OF<br/>EACH DRAWING FOR USAGE.</li> </ol>                                                                                                                                                                                                         | NTS |
|                              | <ol> <li>VALVE SYMBOLS SHOWN HERE ARE APPLICABLE ONLY TO<br/>INSTRUMENTATION DIAGRAMS. SEE PROCESS, MECHANICAL A</li> </ol>                                                                                                                                                                                                                                                                                                    | ND  |
| LINK                         | PLUMBING LEGEND SHEET FOR VALVE SYMBOLS USED<br>ELSEWHERE ON THE DRAWINGS.                                                                                                                                                                                                                                                                                                                                                     |     |
|                              | INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| nt<br>CYCLED<br>PROJECT      | LEGEND, SYMBOLS, AND ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                             |     |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                              | 0 1" 2" FILENAME 101.dwg                                                                                                                                                                                                                                                                                                                                                                                                       |     |

